202825-46-5 Usage
Uses
Used in Pharmaceutical Industry:
Safinamide mesylate is used as an antiparkinsonian agent for the treatment of midto late-stage fluctuating Parkinson's disease. It functions as a highly selective and reversible inhibitor of MAO-B, leading to increased levels of dopamine and subsequent improvement in motor symptoms, while reducing side effects associated with traditional dopamine replacement therapies.
Used in Research Applications:
Safinamide mesylate salt has been used as a reference drug in studies to investigate its inhibitory effect on human monoamine oxidases (hMAO-A and hMAO-B), providing valuable insights into its mechanism of action and potential therapeutic applications in the treatment of Parkinson's disease.
Biochem/physiol Actions
Safinamide is a highly selective and reversible monoamine oxidase type B (MAO-B) inhibitor that increases neostriatal dopamine concentration. In addition, safinamide is voltage-dependent sodium and calcium channel blocker. It appears to bind to the batrachotoxin-sensitive site 2 of the voltage-sensitive sodium channels. Safinamide blocks N and L-type calcium channels and inhibits glutamate and aspartate release from synaptic terminals.
Mechanism of action
Safinamide employs several mechanisms of action, functioning
as both a dopaminergic agent through inhibition of MAO-B as
well as a nondopaminergic agent via selective calcium and
sodium channel modulation, leading to inhibition of glutamate
release. At least one of several clinical studies of patients
with mid- to late-stage Parkinson’s disease showed increased
daily ON time (periods of symptom control) without
accompanying motor complications (dyskinesias) upon treatment
with safinamide, while studies of early stage Parkinson’s
disease patients treated with this drug showed significantly
improved motor symptoms during the 18-month study.
Additionally, safinamide is chemically and metabolically
stable, is well tolerated in patients, and has not exhibited
serious adverse effects even upon treatment at higher dosage
ranges.
Synthesis
While the reported discovery-scale synthetic approaches to
safinamide methanesulfonate were similar to the process-scale
approach, the identification of optimized and improved
reaction conditions were essential for isolation of the target in
high purity and without the presence of highly toxic
byproducts. For example, initial attempts to prepare aryl
benzyl ether 80 from benzyl chloride (78) and
phenol (79) employed conditions which led to the desired Oalkyl
product 80 in addition to the undesired C3-aryl alkylation
product, necessitating laborious and inefficient final-stage
purifications. Alternatively, employing phase transfer catalysis
conditions, specifically the use of tetradecyl trimethylammonium
bromide with K2CO3 in refluxing toluene, have become the conditions of choice, enabling
high selectivity of O-alkylation product 80 in 85% yield and
99.9% purity with minimal amounts of impurities arising from
competitive C- and O-alkylation arising after recrystallization
from diisopropyl ether. From 80, a one-pot reductive
alkylation with L-alaninamide hydrochloride 81 was effected
under standard reductive amination conditions (NaBH3CN/
MeOH). However, poor yields were observed as well as
formation of undesired byproducts. Interestingly, while not a
generally accepted method, an alternate one-pot route for
synthesis of 82 could be realized using heterogeneous reduction
conditions. Toward this end, condensation of 81 with the
aldehyde 80 was followed by immediate reduction with H2 on
wet Pt/C in MeOH, affording safinamide 82 in 92% yield
(98.4% purity). Treatment of 82 with charcoal filtration
followed by salt formation with methanesulfonic acid provided
safinamide methanesulfonate (XI) in 97% yield. In this
improved synthesis, all reactions could be performed on
multikg scale, yielding the final drug target in >99.9% purity
and containing <0.005% of the undesired C,O-bis-alkylated
derivative.
Check Digit Verification of cas no
The CAS Registry Mumber 202825-46-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,0,2,8,2 and 5 respectively; the second part has 2 digits, 4 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 202825-46:
(8*2)+(7*0)+(6*2)+(5*8)+(4*2)+(3*5)+(2*4)+(1*6)=105
105 % 10 = 5
So 202825-46-5 is a valid CAS Registry Number.
InChI:InChI=1/C17H19FN2O2.CH4O3S/c1-12(17(19)21)20-10-13-5-7-16(8-6-13)22-11-14-3-2-4-15(18)9-14;1-5(2,3)4/h2-9,12,20H,10-11H2,1H3,(H2,19,21);1H3,(H,2,3,4)/t12-;/m1./s1
202825-46-5Relevant articles and documents
Process for the preparation of Safinamide Mesylate intermediate
-
, (2021/02/12)
The present application provides methods for the synthesis of intermediates in the synthesis of Safinamide or a pharmaceutically acceptable salt thereof herein Safinamide Mesylate, that is substantially free of impurities.
PROCESS FOR PREPARING SAFINAMIDE
-
Paragraph 0119-0122, (2021/02/12)
The present invention is related to a process for preparing safinamide and salts thereof, preferably safinamide methanesulfonate, with high yields and high enantiomeric and chemical purity without the need of using highly pure intermediates. The process o
A Two Hour Synthesis of the Anti-Parkinson Drug Safinamide Methanesulfonate
Higa, Vanessa M.,Omori, Alvaro T.
supporting information, p. 1433 - 1436 (2021/07/20)
The critical moment of the COVID-19 outbreak requires a real-time supply of therapeutic agents. Thus, time economy in the synthesis of biologically active compounds has become increasingly decisive. In this work, we developed a two hour synthesis of the a
Synthesis and preparation of safinamide mesylate
-
Paragraph 0026, (2020/10/04)
The invention discloses a preparation method of safinamide mesylate, which comprises the following steps: by using commercially available m-fluorobenzyl chloride and p-hydroxybenzaldehyde as initial raw materials, carrying out three-step synthesis in an o
PROCESS FOR THE PREPARATION OF (S)-2-[[4-[(3-FLUOROPHENYL)METHOXY]PHENYL]METHYL]AMINO PROPANAMIDE METHANESULFONATE
-
Page/Page column 11; 13-14, (2019/09/18)
The present invention relates to an improved process for the preparation of (S)-2- [[4-[(3-fluorophenyl) methoxy] phenyl] methyl] amino propanamide methanesulfonate compound of formula-1a, represented by the following structural formula: Formula-1a The pr
Safinamide mesylate preparation method
-
Paragraph 0017, (2017/05/03)
The present invention belongs to the field of pharmaceutical synthesis, and provides a new safinamide mesylate preparation method. According to the present invention, m-fluorobenzyl chloride and p-hydroxybenzaldehyde are adopted as starting raw materials,
Preparation method of safinamide mesilate A1 crystal form
-
Paragraph 0055, (2017/02/24)
The invention relates to a preparation method of safinamide mesilate A1 crystal form. The preparation method comprises following steps: methane sulfonic acid is reacted with safinamide at a certain temperature, cooling is carried out, and an obtained reac
New crystal form of safinamide mesylate and preparation method of new crystal form
-
Page/Page column 0038; 0039, (2018/02/04)
The invention discloses a new crystal form of safinamide mesylate and a preparation method of the new crystal form. According to the new crystal form, the solubility and the stability of existing products are improved, preparation and utilization of the p
Method for preparing industrial safinamide mesylate
-
Paragraph 0017; 0018; 0019, (2017/06/15)
The invention relates to a method for preparing industrial safinamide mesylate, and belongs to the technical field of organic synthesis. The method comprises the steps that a compound 3-fluorobenzylchloride and a compound p-hydroxy benzaldehyde react to g
A new enantioselective synthesis of the anti-Parkinson agent safinamide
Reddi, Anjaneyulu,Mujahid, Mohammad,Sasikumar, Murugesan,Muthukrishnan, Murugan
, p. 1751 - 1756 (2014/07/08)
An alternative highly enantioselective synthesis of the anti-Parkinson agent safinamide from simple, commercially available, starting materials is described. The protocol might also be useful in the synthesis of structural variants of safinamide, such as ralfinamide or related analogues. Georg Thieme Verlag Stuttgart New York.