- Design, synthesis and anti-HBV activity evaluation of new substituted imidazo[4,5-b]pyridines
-
The design and synthesis of a number of new imidazo[4,5-b]pyridines is described. The heterocyclic scaffold possesses 6-chloro- or 5,6-dichloro-substitution and bears various 2-alkylamino-methyl or ethyl groups. The corresponding N1 and N3-tosylates are also presented. The anti-HBV activity of the compounds was evaluated in HBV infectious system at the level of HBV rcDNA secretion and CC50, EC50 and selectivity index values were determined. The tosylates showed low antiviral potency and relatively high cytotoxicity, on the contrary, a number of 2,5 and/or-6-substituted imidazopyridines, mainly those belonging to the 6-chloroimidazo[4,5-b]pyridine series, were endowed with a very interesting profile and were further investigated. The most promising among them, along with the reduction of the secreted HBV rcDNA, also caused a reduction in HBV cccDNA and pgRNA levels, with a concomitant accumulation of the intracellular encapsidated rcDNA. Surprisingly, the most active 2-diethylaminoethyl-substituted derivative (21d), was highly competitive to interferon.
- Gerasi, Maria,Frakolaki, Efseveia,Papadakis, Georgios,Chalari, Anna,Lougiakis, Nikolaos,Marakos, Panagiotis,Pouli, Nicole,Vassilaki, Niki
-
-
- Synthesis of new imidazopyridine nucleoside derivatives designed as maribavir analogues
-
The strong inhibition of Human Cytomegalovirus (HCMV) replication by benzimidazole nucleosides, like Triciribine and Maribavir, has prompted us to expand the structure-activity relationships of the benzimidazole series, using as a central core the imidazo[4,5-b]pyridine scafflold. We have thus synthesized a number of novel amino substituted imidazopyridine nucleoside derivatives, which can be considered as 4-(or 7)-aza-d-isosters of Maribavir and have evaluated their potential antiviral activity. The target compounds were synthesized upon glycosylation of suitably substituted 2-aminoimidazopyridines, which were prepared in six steps starting from 2-amino-6-chloropyridine. Even if the new compounds possessed only a slight structural modification when compared to the original drug, they were not endowed with interesting antiviral activity. Even so, three derivatives showed promising cytotoxic potential.
- Papadakis, Georgios,Gerasi, Maria,Snoeck, Robert,Marakos, Panagiotis,Andrei, Graciela,Lougiakis, Nikolaos,Pouli, Nicole
-
-