2437-56-1Relevant articles and documents
A Novel Catalytic Effect of Lead on the Reduction of a Zinc Carbenoid with Zinc Metal Leading to a Geminal Dizinc Compound. Acceleration of the Wittig-Type Olefination with the RCHX2-TiCl4-Zn Systems by Addition of Lead
Takai, Kazuhiko,Kakiuchi, Tadahiro,Kataoka, Yasutaka,Utimoto, Kiitiro
, p. 2668 - 2670 (1994)
A catalytic amount of lead promotes further reduction of zinc carbenoid (ICH2ZnI) with zinc in THF to give a geminal dizinc compound (CH2(ZnI)2), which is a key intermediate for the methylenation of carbonyl compounds with a CH2I2, zinc, and TiCl4 system.
Chemoselective Carbon-Carbon Bond Formation Reactions of Zirconacyclopentenes
Kasai, Kayoko,Kotora, Martin,Suzuki, Noriyuki,Takahashi, Tamotsu
, p. 109 - 110 (1995)
The reaction of zirconacyclopentenes with allyl chloride in the presence of a copper salt and a lithium or magnesium salt proceeds at the alkenyl carbon on zirconium with high chemoselectivity; selective C-C bond formation at the alkyl carbon was also achieved by treatment of zirconacyclopentenes with a copper salt and a lithium or magnesium salt, methanol and allyl chloride.
A Method for preparing alpha-olefins from Biomass-derived fat and oil
-
Paragraph 0191-0202; 0239-0242, (2020/09/22)
The present invention relates to a method for preparing alpha-olefins from biomass-derived fats and oils. According to the preparation method, all of the various saturated or unsaturated fatty acids in the biomass-derived fats and oils can be prepared into alpha-olefins, and a conventional problem that the saturated fatty acids do not participate in a reaction or a mixture is generated due to polyunsaturated fatty acids can be solved. Thus, the present invention can be advantageously used to prepare alpha-olefins from biomass.
Alkene synthesis by photocatalytic chemoenzymatically compatible dehydrodecarboxylation of carboxylic acids and biomass
Nguyen, Vu T.,Nguyen, Viet D.,Haug, Graham C.,Dang, Hang T.,Jin, Shengfei,Li, Zhiliang,Flores-Hansen, Carsten,Benavides, Brenda S.,Arman, Hadi D.,Larionov, Oleg V.
, p. 9485 - 9498 (2019/10/11)
Direct conversion of renewable biomass and bioderived chemicals to valuable synthetic intermediates for organic synthesis and materials science applications by means of mild and chemoselective catalytic methods has largely remained elusive. Development of artificial catalytic systems that are compatible with enzymatic reactions provides a synergistic solution to this enduring challenge by leveraging previously unachievable reactivity and selectivity modes. We report herein a dual catalytic dehydrodecarboxylation reaction that is enabled by a crossover of the photoinduced acridine-catalyzed O-H hydrogen atom transfer (HAT) and cobaloxime-catalyzed C-H-HAT processes. The reaction produces a variety of alkenes from readily available carboxylic acids. The reaction can be embedded in a scalable triple-catalytic cooperative chemoenzymatic lipase-acridine-cobaloxime process that allows for direct conversion of plant oils and biomass to long-chain terminal alkenes, precursors to bioderived polymers.
An Engineered Self-Sufficient Biocatalyst Enables Scalable Production of Linear α-Olefins from Carboxylic Acids
Lu, Chen,Shen, Fenglin,Wang, Shuaibo,Wang, Yuyang,Liu, Juan,Bai, Wen-Ju,Wang, Xiqing
, p. 5794 - 5798 (2018/06/01)
Fusing the decarboxylase OleTJE and the reductase domain of P450BM3 creates a self-sufficient protein, OleT-BM3R, which is able to efficiently catalyze oxidative decarboxylation of carboxylic acids into linear α-olefins (LAOs) under mild aqueous conditions using O2 as the oxidant and NADPH as the electron donor. The compatible electron transfer system installed in the fusion protein not only eliminates the need for auxiliary redox partners, but also results in boosted decarboxylation reactivity and broad substrate scope. Coupled with the phosphite dehydrogenase-based NADPH regeneration system, this enzymatic reaction proceeds with improved product titers of up to 2.51 g L-1 and volumetric productivities of up to 209.2 mg L-1 h-1 at low catalyst loadings (~0.02 mol%). With its stability and scalability, this self-sufficient biocatalyst offers a nature-friendly approach to deliver LAOs.
A durable nanocatalyst of potassium-doped iron-carbide/alumina for significant production of linear alpha olefins via Fischer-Tropsch synthesis
Park, Ji Chan,Jang, Sanha,Rhim, Geun Bae,Lee, Jin Hee,Choi, Hyunkyoung,Jeong, Heon-Do,Youn, Min Hye,Lee, Dong-Wook,Koo, Kee Young,Kang, Shin Wook,Yang, Jung-Il,Lee, Ho-Tae,Jung, Heon,Kim, Chul Sung,Chun, Dong Hyun
, p. 190 - 198 (2018/08/01)
Improvement of activity, selectivity, and stability of the catalyst used in Fischer-Tropsch synthesis (FTS) to produce targeted hydrocarbon products has been a major challenge. In this work, the potassium-doped iron-carbide/alumina (K-Fe5C2/Al2O3), as a durable nanocatalyst containing small iron-carbide particles (~ 10 nm), was applied to high-temperature Fischer-Tropsch synthesis (HT-FTS) to optimize the production of linear alpha olefins. The catalyst, suitable under high space velocity reaction conditions (14–36 N L gcat?1 h?1) based on the well-dispersed potassium as an efficient base promoter on the active iron-carbide surface, shows very high CO conversion (up to ~90%) with extremely high activity (1.41 mmolCO gFe?1 s?1) and selectivity for C5–C13 linear alpha olefins.
Anhydride-Additive-Free Nickel-Catalyzed Deoxygenation of Carboxylic Acids to Olefins
John, Alex,Hillmyer, Marc A.,Tolman, William B.
supporting information, p. 506 - 509 (2017/04/21)
A nickel-catalyzed route for direct, anhydride-additive-free deoxygenation of fatty acids to the corresponding olefins has been developed. The transformation is catalyzed by simple nickel salts of the type NiX2 (X = halide, acetate, acetylacetonate), uses PPh3 as a stoichiometric reductant, and exhibits selectivity for generation of linear α-olefin products. The reaction was rendered cocatalytic in PPh3 using 1,1,3,3-tetramethyldisiloxane (TMDS) as terminal reductant for the in situ reduction of OPPh3 and catalytic Cu(OTf)2
Selective Decarbonylation of Fatty Acid Esters to Linear α-Olefins
John, Alex,Dereli, Büsra,Ortunìo, Manuel A.,Johnson, Hillis E.,Hillmyer, Marc A.,Cramer, Christopher J.,Tolman, William B.
, p. 2956 - 2964 (2017/08/21)
Selective decarbonylation of p-nitrophenol esters of fatty acids to the corresponding linear α-olefins (LAOs) was achieved using palladium catalysis. After extensive ligand screening, a mixed-ligand system exploiting the trans-spanning diphosphine XantPhos and an N-heterocyclic carbene (IPr) was identified as the most effective in yielding high α-selectivity and high conversions of the ester (>98% selectivity, >90% conversion using 2.5 mol % of PdCl2 and 5 mol % of the ligands, 190 °C, 2-2.5 h). On the basis of insights from modeling at the density functional level of theory, we propose that the mixed-ligand set achieves high α-selectivity by promoting olefin dissociation from the palladium center following β-hydride elimination, which is especially facilitated both by the combined steric bias of the mixed-ligand set and by the ability of the XantPhos ligand to coordinate in both mono- and bidentate fashions.
CATALYTIC ESTER DECARBONYLATION
-
Paragraph 0087-0088, (2016/08/07)
A process of preparing olefins of the formula (I) is described herein: with R1 being a substituted or unsubstituted (C1-C30)hydrocarbyl, and R2 being a substituted or unsubstituted (C1-C20)hydrocarbyl. The process includes reacting a compound of formula (II) wherein Ar is chosen from in the presence of a palladium-based catalyst and an organic solvent. A process of preparing olefins of the formula (III) is also described: with R3 being a substituted or unsubstituted (C1-C30)hydrocarbyl, R4 being a substituted or unsubstituted (C1-C20)hydrocarbyl, and R5 being a substituted or unsubstituted (C1-C30) hydrocarbyl. The process includes reacting a compound of formula (IV) wherein Ar is chosen from with a compound of formula (V) wherein Ar is chosen from in the presence of a palladium-based catalyst and an organic solvent.
PALLADIUM-CATALYZED DECARBONYLATION OF FATTY ACID ANHYDRIDES FOR THE PRODUCTION OF LINEAR ALPHA OLEFINS
-
Page/Page column, (2014/06/23)
The present invention is directed to methods of forming olefins, especially linear alpha olefins from fatty acids or anhydrides, each method comprising: contacting an amount of precursor carboxylic acid anhydride with a palladium catalyst comprising a bidentate bis-phosphine ligand in a reaction mixture so as to form an olefin in a product with the concomittant formation and removal of CO and water from the reaction mixture, either directly or indirectly, wherein the reaction mixture is maintained with a sub-stoichiometric excess of a sacrificial carboxylic acid anhydride, an organic acid, or both, said sub-stoichiometric excess being relative to the amount of the precursor carboxylic acid anhydride. The precursor carboxylic acid anhydride may be added to the reaction mixture directly or formed in situ by the reaction between at least one precursor carboxylic acid with a stoichiometric amount of the sacrificial acid anhydride.