25194-67-6Relevant articles and documents
HETEROCYCLIC COMPOUNDS FOR THE TREATMENT OF EPILEPSY
-
Paragraph 0141; 0144, (2020/06/19)
The present invention provides a novel heterocyclic compound represented by Formula [I] and a salt thereof: wherein the symbols are as defined in the specification, which is useful for treating, preventing and/or diagnosing seizure and the like in disease involving epileptic seizure or convulsive seizure (including multiple drug resistant seizure, refractory seizure, acute symptomatic seizure, febrile seizure and status epilepticus), as well as a medical use therefor.
INHIBITORS OF BRUTON'S TYROSINE KINASE
-
Page/Page column 48; 51; 53, (2015/06/25)
This application discloses compounds according to generic Formula (I): wherein all variables are defined as described herein, which inhibit Btk. The compounds disclosed herein are useful to modulate the activity of Btk and treat diseases associated with excessive Btk activity. The compounds are useful for the treatment of oncological, auto-immune, and inflammatory diseases caused by aberrant B-cell activation. Also disclosed are compositions containing compounds of Formula I and at least one carrier, diluent or excipient.
NOVEL INDOL CARBOXYLIC ACID BISPYRIDYL CARBOXAMIDE DERIVATIVES, PHARMACEUTICALLY ACCEPTABLE SALT THEREOF, PREPARATION METHOD AND COMPOSITION CONTAINING THE SAME AS AN ACTIVE INGREDIENT
-
, (2009/11/29)
Disclosed herein are a new indole carboxylic acid bispyridyl carboxamide derivative, a preparation method thereof, and a composition for prevention or treatment of obesity, urinary disorders, and CNS disorders, containing the same as an active ingredient. Because the indole carboxylic acid bispyridyl carboxamide derivatives according to the present invention have high affinity for 5-HT2c receptors, act selectively on the 5-HT2c receptors, the derivatives rarely have adverse effects caused by other receptors. Because the derivatives effectively inhibit serotonin activity, they may be useful for treatment or prevention of obesity; urinary disorders such as urinary incontinence, premature ejaculation, erectile dysfunction, and prostatic hyperplasia; CNS disorders such as depression, anxiety, concern, panic disorder, epilepsy, obsessive-compulsive disorder, migraine, sleep disorder, withdrawal from drug abuse, Alzheimer's disease, and schizophrenia, associated with 5-HT2c receptors.
NOVEL INDOL CARBOXYLIC ACID BISPYRIDYL CARBOXAMIDE DERIVATIVES, PHARMACEUTICALLY ACCEPTABLE SALT THEREOF, PREPARATION METHOD AND COMPOSITION CONTAINING THE SAME AS AN ACTIVE INGREDIENT
-
Page/Page column 14, (2009/10/21)
Disclosed herein are a new indole carboxylic acid bispyridyl carboxamide derivative, a preparation method thereof, and a composition for prevention or treatment of obesity, urinary disorders, and CNS disorders, containing the same as an active ingredient. Because the indole carboxylic acid bispyridyl carboxamide derivatives according to the present invention have high affinity for 5-HT2c receptors, act selectively on the 5-HT2c receptors, the derivatives rarely have adverse effects caused by other receptors. Because the derivatives effectively inhibit serotonin activity, they may be useful for treatment or prevention of obesity; urinary disorders such as urinary incontinence, premature ejaculation, erectile dysfunction, and prostatic hyperplasia; CNS disorders such as depression, anxiety, concern, panic disorder, epilepsy, obsessive-compulsive disorder, migraine, sleep disorder, withdrawal from drug abuse, Alzheimer's disease, and schizophrenia, associated with 5-HT2c receptors.
Novel indol carboxylic acid bispyridyl carboxamide derivatives as 5-HT2c receptor antagonists
-
Page/Page column 21-22, (2009/10/21)
Disclosed herein are a new indole carboxylic acid bispyridyl carboxamide derivative, a preparation method thereof, and a composition for prevention or treatment of obesity, urinary disorders, and CNS disorders, containing the same as an active ingredient. Because the indole carboxylic acid bispyridyl carboxamide derivatives according to the present invention have high affinity for 5-HT2c receptors, act selectively on the 5-HT2c receptors, the derivatives rarely have adverse effects caused by other receptors. Because the derivatives effectively inhibit serotonin activity, they may be useful for treatment or prevention of obesity; urinary disorders such as urinary incontinence, premature ejaculation, erectile dysfunction, and prostatic hyperplasia; CNS disorders such as depression, anxiety, concern, panic disorder, epilepsy, obsessive-compulsive disorder, migraine, sleep disorder, withdrawal from drug abuse, Alzheimer's disease, and schizophrenia, associated with 5-HT2c receptors.
Synthesis of glutamic acid analogs as potent inhibitors of leukotriene A4 hydrolase
Kirkland, Thomas A.,Adler, Marc,Bauman, John G.,Chen, Ming,Haeggstroem, Jesper Z.,King, Beverly,Kochanny, Monica J.,Liang, Amy M.,Mendoza, Lisa,Phillips, Gary B.,Thunnissen, Marjolein,Trinh, Lan,Whitlow, Marc,Ye, Bin,Ye, Hong,Parkinson, John,Guilford, William J.
, p. 4963 - 4983 (2008/12/21)
Leukotriene B4 (LTB4) is a potent pro-inflammatory mediator that has been implicated in the pathogenesis of multiple diseases, including psoriasis, inflammatory bowel disease, multiple sclerosis and asthma. As a method to decrease the level of LTB4 and possibly identify novel treatments, inhibitors of the LTB4 biosynthetic enzyme, leukotriene A4 hydrolase (LTA4-h), have been explored. Here we describe the discovery of a potent inhibitor of LTA4-h, arylamide of glutamic acid 4f, starting from the corresponding glycinamide 2. Analogs of 4f are then described, focusing on compounds that are both active and stable in whole blood. This effort culminated in the identification of amino alcohol 12a and amino ester 6b which meet these criteria.
Synthesis and structure-activity relationship of 1H-indole-3-carboxylic acid pyridine-3-ylamides: A novel series of 5-HT2C receptor antagonists
Park, Chul Min,Kim, So Young,Park, Woo Kyu,Park, No Sang,Seong, Churl Min
scheme or table, p. 3844 - 3847 (2009/04/16)
A novel series of 1H-indole-3-carboxylic acid pyridine-3-ylamides were synthesized and identified to show high affinity and selectivity for 5-HT2C receptor. Among them, 1H-indole-3-carboxylic acid[6-(2-chloro-pyridin-3-yloxy)-pyridin-3-yl]-amide (15k) exhibits the highest affinity (IC50 = 0.5 nM) with an excellent selectivity (>2000 times) over other serotonin (5-HT1A, 5-HT2A, and 5-HT6) and dopamine (D2-D4) receptors.
GLUCAGON ANTAGONISTS/INVERSE AGONISTS
-
Page/Page column 146-147, (2010/02/14)
A novel class of compounds, which act to antagonize the action of the glucagon hormone on the glucagon receptor. Owing to their antagonizing effect of the glucagon receptor the compounds may be suitable for the treatment and/or prevention of any glucagon-
Glucagon antagonists/inverse agonists
-
, (2008/06/13)
Disclosed is a novel class of compounds of formula (I) wherein V, A, Y, Z, R1, E, X and D are as defined in the specification. These compounds act to antagonize the action of the glucagon hormone on the glucagon receptor. Owing to their antagonizing effect of the glucagon receptor, the compounds are suitable for treating or preventing glucagon-mediated conditions and diseases such as hyperglycemia, Type 1 diabetes, Type 2 diabetes and obesity.
SUBSTITUTED CARBOXYLIC ACID DERIVATIVES
-
Page/Page column 29, (2010/11/29)
The invention provides novel substituted carboxylic acid derivatives that bind to receptor as ligands of human peroxisome proliferator-activated receptor (PPAR) to activate it and exhibit potent triglyceride-lowering action, cholesterol-lowering action an