333436-63-8Relevant articles and documents
Tetracoordinate borates as catalysts for reductive formylation of amines with carbon dioxide
Du, Chen-Xia,Huang, Zijun,Jiang, Xiaolin,Li, Yuehui,Makha, Mohamed,Wang, Fang,Zhao, Dongmei
supporting information, p. 5317 - 5324 (2020/09/17)
We report sodium trihydroxyaryl borates as the first robust tetracoordinate organoboron catalysts for reductive functionalization of CO2. These catalysts, easily synthesized from condensing boronic acids with metal hydroxides, activate main group element-hydrogen (E-H) bonds efficiently. In contrast to BX3 type boranes, boronic acids and metal-BAr4 salts, under transition metal-free conditions, sodium trihydroxyaryl borates exhibit high reactivity of reductive N-formylation toward a variety of amines (106 examples), including those with functional groups such as ester, olefin, hydroxyl, cyano, nitro, halogen, MeS-, ether groups, etc. The over-performance to catalyze formylation of challenging pyridyl amines affords a promising alternative method to the use of traditional formylation reagents. Mechanistic investigation supports electrostatic interactions as the key for Si/B-H activation, enabling alkali metal borates as versatile catalysts for hydroborylation, hydrosilylation, and reductive formylation/methylation of CO2.
On the formation and 1H NMR-spectroscopic characterization of N,N-diaryl-substituted formamide chlorides
Sch?newerka, Jens,Hartmann, Horst
experimental part, p. 277 - 284 (2012/07/14)
The reaction of N,N-diaryl-substituted formamides with oxalyl chloride gives rise, instead to the formation of the expected salt-like formamide chlorides, to the formation of corresponding non-ionic N-dichloromethyl- substituted diarylamines.