497855-80-8Relevant articles and documents
Identification of novel imidazole flavonoids as potent and selective inhibitors of protein tyrosine phosphatase
Zhang, Ling,Ge, Yu,Wang, Qing Ming,Zhou, Cheng-He
, (2019/04/17)
A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit P
Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE)
Sharma, Rahul,Gupta, Bhanushree,Sahu, Arvind Kumar,Acharya, Jyotiranjan,Satnami, Manmohan L.,Ghosh, Kallol K.
, p. 85 - 92 (2016/12/09)
Post-treatment of organophosphate (OP) poisoning involves the application of oxime reactivator as an antidote. Structurally different oximes are widely studied to examine their kinetic and mechanistic behavior against OP-inhibited cholinesterase enzyme. A series of structurally related 1,3-disubstituted-2-[(hydroxyiminomethyl)alkyl]imidazolium halides (5a–5e, 9a–9c) were synthesized and further evaluated for their in-vitro reactivation ability to reactivate sarin- and VX-inhibited human acetylcholinesterase (hAChE). The observed results were compared with the reactivation efficacy of standard reactivators; 2-PAM, obidoxime and HI-6. Amongst the synthesized oximes, 5a, 9a and 9b were found to be most potent reactivators against sarin-inhibited hAChE while in case of VX only 9a exhibited comparable reactivity with 2-PAM. Incorporation of pyridinium ring to the imidazole ring resulted in substantial increase in the reactivation strength of prepared reactivator. Physicochemical properties of synthesized reactivators have also been evaluated.
Spin crossover properties of enantiomers, co-enantiomers, racemates, and co-racemates
Qin, Long-Fang,Pang, Chun-Yan,Han, Wang-Kang,Zhang, Feng-Li,Tian, Lei,Gu, Zhi-Guo,Ren, Xuehong,Li, Zaijun
, p. 7340 - 7348 (2016/06/01)
Through multi-component self-assembly of chiral phenylethylamine, 1-alkyl-2-imidazolecarboxaldehyde and iron(ii) ions, two couples of enantiomeric iron(ii) complexes 4R, 4S, 5R and 5S with the formula of fac-Λ or Δ-[Fe(L)3]2+(L = R o
Structure-Activity Relationship and Pharmacokinetic Studies of 1,5-Diheteroarylpenta-1,4-dien-3-ones: A Class of Promising Curcumin-Based Anticancer Agents
Wang, Rubing,Chen, Chengsheng,Zhang, Xiaojie,Zhang, Changde,Zhong, Qiu,Chen, Guanglin,Zhang, Qiang,Zheng, Shilong,Wang, Guangdi,Chen, Qiao-Hong
, p. 4713 - 4726 (2015/06/25)
Forty-three 1,5-diheteroaryl-1,4-pentadien-3-ones were designed as potential curcumin mimics, structurally featuring a central five-carbon dienone linker and two identical nitrogen-containing aromatic rings. They were synthesized using a Horner-Wadsworth-Emmons reaction as the critical step and evaluated for their cytotoxicity and antiproliferative activities toward both androgen-insensitive and androgen-sensitive prostate cancer cell lines and an aggressive cervical cancer cell line. Most of the synthesized compounds showed distinctly better in vitro potency than curcumin in the four cancer cell lines. The structure-activity data acquired from the study validated (1E,4E)-1,5-dihereroaryl-1,4-pentadien-3-ones as an excellent scaffold for in-depth development for clinical treatment of prostate and cervical cancers. 1-Alkyl-1H-imidazol-2-yl, ortho pyridyl, 1-alkyl-1H-benzo[d]imidazole-2-yl, 4-bromo-1-methyl-1H-pyrazol-3-yl, thiazol-2-yl, and 2-methyl-4-(trifluoromethyl)thiazol-5-yl were identified as optimal heteroaromatic rings for the promising in vitro potency. (1E,4E)-1,5-Bis(2-methyl-4-(trifluoromethyl)thiazol-5-yl)penta-1,4-dien-3-one, featuring thiazole rings and trifluoromethyl groups, was established as the optimal lead compound because of its good in vitro potency and attractive in vivo pharmacokinetic profiles. (Chemical Equation Presented).
New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases
Sit, Rakesh K.,Radic, Zoran,Gerardi, Valeria,Zhang, Limin,Garcia, Edzna,Katalinic, Maja,Amitai, Gabriel,Kovarik, Zrinka,Fokin, Valery V.,Sharpless, K. Barry,Taylor, Palmer
scheme or table, p. 19422 - 19430 (2012/04/10)
We describe here the synthesis and activity of a new series of oxime reactivators of cholinesterases (ChEs) that contain tertiary amine or imidazole protonatable functional groups. Equilibration between the neutral and protonated species at physiological pH enables the reactivators to cross the blood-brain barrier and distribute in the CNS aqueous space as dictated by interstitial and cellular pH values. Our structure-activity analysis of 134 novel compounds considers primarily imidazole aldoximes and N-substituted 2- hydroxyiminoacetamides. Reactivation capacities of novel oximes are rank ordered by their relative reactivation rate constants at 0.67 mM compared with 2-pyridinealdoxime methiodide for reactivation of four organophosphate (sarin, cyclosarin, VX, and paraoxon) conjugates of3 human acetylcholinesterase (hAChE). Rank order of the rates differs for reactivation of human butyrylcholinesterase (hBChE) conjugates. The 10 best reactivating oximes, predominantly hydroxyimino acetamide derivatives (for hAChE) and imidazole-containing aldoximes (for hBChE) also exhibited reasonable activity in the reactivation of tabun conjugates. Reactivation kinetics of the lead hydroxyimino acetamide reactivator of hAChE, when analyzed in terms of apparent affinity (1/Kox) and maximum reactivation rate (k2), is superior to the reference uncharged reactivators monoisonitrosoacetone and 2,3-butanedione monoxime and shows potential for further refinement. The disparate pH dependences for reactivation of ChE and the general base-catalyzed oximolysis of acetylthiocholine reveal that distinct reactivator ionization states are involved in the reactivation of ChE conjugates and in conferring nucleophilic reactivity of the oxime group.
BENZAZEPINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND USE
-
Page 227, (2010/02/06)
The present invention provides a novel benzazepine derivative represented by formula : wherein, R1 is a 5- or 6-membered aromatic ring, R2 is lower alkyl group, etc., Y is an optionally substituted imino group, ring A and ring B are independently an optionally substituted aromatic ring, W is formula -W1-X2-W2- (W1 and W2 are independently S(O)m1 (m1 is 0, 1 or 2), etc., and X2 is an optionally substituted alkylene groupetc. ), a preparation method and use thereof.