53439-81-9Relevant articles and documents
Organocatalyst in Direct C(sp2)-H Arylation of Unactivated Arenes: [1-(2-Hydroxyethyl)-piperazine]-Catalyzed Inter-/Intra-molecular C-H Bond Activation
Yadav, Lalit,Tiwari, Mohit K.,Shyamlal, Bharti Rajesh Kumar,Chaudhary, Sandeep
, p. 8121 - 8141 (2020/07/16)
This article describes the identification of 1-(2-hydroxyethyl)-piperazine as a new, cost-effective, highly efficient organocatalyst, which promotes both inter- A nd intra-molecular direct C(sp2)-H arylations of unactivated arenes in the presence of potassium tert-butoxide. While the inter-molecular C-H arylation of unactivated benzenes with aryl halides (Ar-X; X = I, Br, Cl) toward biaryl syntheses underwent smoothly in the presence of only 10 mol percent organocatalyst, the intra-molecular C-H arylation catalytic system composed of 40 mol percent each of the catalyst and the additive (4-dimethylaminopyridine (DMAP)). The novel catalyst was also able to perform both inter- A nd intra-molecular direct arylations simultaneously in a single pot. The mechanistic studies confirmed the involvement of aryl radical anions and proceeded via a single-electron-transfer (SET) mechanism. The large substrate scope, high functional group tolerance, competition experiments, gram-scale synthesis, and kinetic studies further highlight the importance and versatile nature of the methodology as well as the compatibility of the new catalyst. To the best of our knowledge, this is the first report on any organocatalyst that reported detailed investigations of both inter- A nd intra-molecular direct C(sp2)-H arylations of unactivated arenes in a single representation.
A Pd-catalyzed, boron ester-mediated, reductive cross-coupling of two aryl halides to synthesize tricyclic biaryls
Chen, Zhilong,Wang, Xiaodong
supporting information, p. 5790 - 5796 (2017/07/22)
Tricyclic biaryls are important scaffold structures in many natural products and lead compounds in drug discovery. The formation of a biaryl unit is often the key step for the synthesis of tricyclic biaryls. Despite significant progress toward the synthesis of biaryl compounds in recent years, the direct cross-coupling of two different aryl halides is still challenging and robust methods are lacking. Herein we report a direct cross-coupling of two different aryl halides in the presence of a palladium catalyst and boron ester, which provides a new and useful complementary method to synthesize tricyclic biaryls.
KOtBu mediated synthesis of phenanthridinones and dibenzoazepinones
Bhakuni, Bhagat Singh,Kumar, Amit,Balkrishna, Shah Jaimin,Sheikh, Javeed Ahmed,Konar, Sanjit,Kumar, Sangit
supporting information; experimental part, p. 2838 - 2841 (2012/07/28)
Synthesis of substituted phenanthridinones and dibenzoazepinones has been realized from 2-halo-benzamides in the presence of potassium tert-butoxide and a catalytic amount of 1,10-phenanthroline or AIBN. This new carbon-carbon bond forming reaction gives direct access to various biaryl lactams containing six- and seven-membered rings chemoselectively. Carbon-carbon coupling seems to proceed by the generation of a radical in the amide ring which leads to C-H arylation of aniline.
PROTEIN KINASE INHIBITORS AND USE THEREOF
-
Page/Page column 43, (2009/10/21)
Disclosed are benzonaphthyridinyl derivative compounds and analogs thereof, pharmaceutical compositions comprising such compounds and processes for preparing the same. The compounds are useful in the treatment of diseases amenable to kinase signal transduction inhibition, regulation or modulation.
Design and synthesis of poly ADP-ribose polymerase-1 inhibitors. 2. Biological evaluation of aza-5[H]-phenanthridin-6-ones as potent, aqueous-soluble compounds for the treatment of ischemic injuries
Ferraris, Dana,Ko, Yao-Sen,Pahutski, Thomas,Ficco, Rica Pargas,Serdyuk, Larisa,Alemu, Christina,Bradford, Chadwick,Chiou, Tiffany,Hoover, Randall,Huang, Shirley,Lautar, Susan,Liang, Shi,Lin, Qian,Lu, May X.-C.,Mooney, Maria,Morgan, Lisa,Qian, Yongzhen,Tran, Scott,Williams, Lawrence R.,Wu, Qi Yi,Zhang, Jie,Zou, Yinong,Kalish, Vincent
, p. 3138 - 3151 (2007/10/03)
A series of aza-5[H]-phenanthridin-6-ones were synthesized and evaluated as inhibitors of poly ADP-ribose polymerase-1 (PARP-1). Inhibitory potency of the unsubstituted aza-5[H]-phenanthridin-6-ones (i.e., benzonaphthyridones) was dependent on the positio
Photoreaction of 2-halo-N-pyridinylbenzamide: Intramolecular cyclization mechanism of phenyl radical assisted with n-complexation of chlorine radical
Park,Jung,Kim,Kim,Song,Kim
, p. 2197 - 2206 (2007/10/03)
The photochemical behavior of 2-halo-N-pyridinylbenzamide (1-4 in Chart 1) was studied. The photoreaction of 2-chloro-N-pyridinylbenzamides 1a, 2a, 3a, and 4 afforded photocyclized products, benzo[c]naphthyridinones (6-9 and 16), in high yield, whereas the bromo analogues 1b, 2b, and 3b produced extensively photoreduced products, N-pyridinylbenzamides (1c, 10, and 11), with minor photocyclized product. Since the photocyclization reaction of 2-chloro-N-pyridinylbenzamide is retarded by the presence of oxygen and sensitized by the presence of a triplet sensitizer, acetone or acetophenone, a triplet state of the chloro analogue is involved in the reaction. Since several radical intermediates, particularly n-complexes of chlorine radical, are identified in the laser flash photolysis of 2-chloro-N-pyridinylbenzamide, an intramolecular cyclization mechanism of phenyl radical assisted with n-complexation of chlorine radical for the cyclization reaction is proposed: the triplet state (78 kcal/mol) of the chloro analogue (1a), which is populated by the excitation of 1a undergoes a homolytic cleavage of the C-Cl bond to give phenyl and chlorine radicals; while chlorine radical holds the neighbor pyridinyl ring with its n-complexation, the intramolecular arylation of the phenyl radical with the pyridinyl ring proceeds to produce a conjugated 2,3-dihydropyridinyl radical and then the conjugated radical aromatizes to afford a cyclized product, benzo[c]naphthyridinone by ejecting a hydrogen. The photoreduction product can be formed by hydrogen atom abstraction of the phenyl a radical from the environment.