62314-66-3Relevant articles and documents
Zn(II) complexes of glutathione disulfide: Structural basis of elevated stabilities
Krezel, Artur,Wojcik, Jacek,Maciejczyk, Maciej,Bal, Wojciech
experimental part, p. 72 - 85 (2011/02/27)
Glutathione disulfide (GSSG), a long disregarded redox partner of glutathione (GSH), is thought to participate in intracellular zinc homeostasis. We performed a concerted potentiometric and NMR spectroscopic study of protonation and Zn(II) binding properties of GSSG ((γECG)2) and a series of its nine analogs with C-terminal modifications, tripeptide disulfides: (γECS)2, (γECE)2, (γECG-NH2)2, (γECG-OEt)2, and (γEcG)2; dipeptide disulfides, (γEC)2 and (γEC-OEt)2; and mixed disulfides, γECG-γEC and γECG-γEC-OEt. The acid-base and Zn(II) complexation properties in this group of compounds are strictly correlated to average C-terminal electrostatic charges. In particular, it was demonstrated that GSSG assumes a bent (head-to-tail) conformation in solution at neutral pH, which is controlled by electrostatic attraction between the protonated γ-amino groups of the Glu residue and the deprotonated C-terminal Gly carboxylates. This interaction modulates the ability of GSSG to coordinate Zn(II), both indirectly, by affecting the basicities of the amino groups, and directly, through the participation of the Gly carboxylates in the outer coordination sphere of the Zn(II) ion. A specific coiled structure of the major [Zn-GSSG]2- complex is additionally stabilized by the formation of hydrogen bonds between glycinyl carboxylates and two Zn(II)-coordinated water molecules. The elevated stability of Zn(II)-GSSG complexes was demonstrated by competition with FluoZin-3, a fluorescent sensor with high Zn(II) affinity, commonly used in in vitro and in vivo studies. The potential biological functions and reactivity of GSSG complexes of Zn(II) ions are discussed.
Identification and characterization of the first ovothiol biosynthetic Enzyme
Braunshausen, Andrea,Seebeck, Florian P.
supporting information; experimental part, p. 1757 - 1759 (2011/04/15)
Ovothiols are histidine-derived thiols that were first isolated from marine invertebrates. We have identified a 5-histidylcysteine sulfoxide synthase (OvoA) as the first ovothiol biosynthetic enzyme and characterized OvoAs from Erwinia tasmaniensis and Trypanosoma cruzi. Homologous enzymes are encoded in more than 80 genomes ranging from proteobacteria to animalia.
A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes
Rubino, Federico Maria,Pitton, Marco,Brambilla, Gabri,Colombi, Antonio
, p. 1578 - 1593 (2007/10/03)
To better understand the fragmentation processes of the metal-biothiol conjugates and their possible significance in biological terms, an energy-resolved mass spectrometric study of the glutathione conjugates of heavy metals, of several thiols and disulfides of the glutathione metaboloma has been carried out. The main fragmentation process of γ-glutamyl compounds, whether in the thiol, disulfide, thioether or metal-bis-thiolate form, is the loss of the γ-glutamyl residue, a process which ERMS data showed to be hardly influenced by the sulfur substitution. However, loss of the γ-glutamyl residue from the mono-S-glutathionyl-mercury (II) cation is a much more energetic process, possibly pointing at a strong coordination of the carboxylic group to the metal. Moreover, loss of neutral mercury from ions containing the γ-glutamyl residue to yield a sulfenium cation was a much more energetic process than those not containing them, suggesting that the redox potential of the thiol/disulfide system plays a role in the formal reduction of the mercury dication in the gas phase. Occurrence of complementary sulfenium and protonated thiol fragments in the spectra of protonated disulfides of the glutathione metaboloma mirrors the thiol/disulfide redox process of biological importance. The intensity ratio of the fragments is proportional to the reduction potential in solution of the corresponding redox pairs. This finding has allowed the calculation of the previously unreported reduction potentials for the disulfide/thiol pair of cysteinylglycine, thereby confirming the decomposition scheme of bis- and mono-S-glutathionyl-mercury (II) ions. Finally, on the sole basis of the mass spectrometric fragmentation of the glutathione-mercury conjugates, and supported by independent literature evidence, an unprecedented mechanism for mercury ion-induced cellular oxidative stress could be proposed, based on the depletion of the glutathione pool by a catalytic mechanism acting on the metal (II)-thiol conjugates and involving as a necessary step the enzymatic removal of the glutamic acid residue to yield a mercury (II)-cysteinyl-glycine conjugate capable of regenerating neutral mercury through the oxidation of glutathione thiols to the corresponding disulfides. Copyright