832-71-3Relevant articles and documents
Alumina-Mediated π-Activation of Alkynes
Akhmetov, Vladimir,Amsharov, Konstantin,Feofanov, Mikhail,Sharapa, Dmitry I.
, p. 15420 - 15426 (2021/09/30)
The ability to induce powerful atom-economic transformation of alkynes is the key feature of carbophilic π-Lewis acids such as gold- and platinum-based catalysts. The unique catalytic activity of these compounds in electrophilic activations of alkynes is explained through relativistic effects, enabling efficient orbital overlapping with π-systems. For this reason, it is believed that noble metals are indispensable components in the catalysis of such reactions. In this study, we report that thermally activated γ-Al2O3activates enynes, diynes, and arene-ynes in a manner enabling reactions that were typically assigned to the softest π-Lewis acids, while some were known to be triggered exclusively by gold catalysts. We demonstrate the scope of these transformations and suggest a qualitative explanation of this phenomenon based on the Dewar-Chatt-Duncanson model confirmed by density functional theory calculations.
Br?nsted Acid-Catalyzed Carbonyl-Olefin Metathesis: Synthesis of Phenanthrenes via Phosphomolybdic Acid as a Catalyst
Chen, Yi,Jin, Yuan,Lin, Zhihua,Liu, Di,Shu, Mao,Tan, Jingyao,Tian, Lingfeng,Wang, Rui,Xu, Li,Zhang, Xiaoke
, (2022/01/03)
Compared with the impressive achievements of catalytic carbonyl-olefin metathesis (CCOM) mediated by Lewis acid catalysts, exploration of the CCOM through Br?nsted acid-catalyzed approaches remains quite challenging. Herein, we disclose a synthetic protocol for the construction of a valuable polycycle scaffold through the CCOM with the inexpensive, nontoxic phosphomolybdic acid as a catalyst. The current annulations could realize carbonyl-olefin, carbonyl-alcohol, and acetal-alcohol in situ CCOM reactions and feature mild reaction conditions, simple manipulation, and scalability, making this strategy a promising alternative to the Lewis acid-catalyzed COM reaction.
Construction of Phenanthrenes and Chrysenes from β-Bromovinylarenes via Aryne Diels-Alder Reaction/Aromatization
Singh, Vikram,Verma, Ram Subhawan,Khatana, Anil K.,Tiwari, Bhoopendra
, p. 14161 - 14167 (2019/10/28)
A highly efficient transition-metal-free general method for the synthesis of polycyclic aromatic hydrocarbons like phenanthrenes and chrysenes (and tetraphene) from β-bromovinylarenes and arynes has been developed. The reactions proceed via an aryne Diels-Alder (ADA) reaction, followed by a facile aromatization. This is the first report on direct construction of chrysenes (and tetraphene) using the ADA approach. Unlike the literature method which is limited to only 9/10-substituted derivatives, this method gives access to a wide variety of functionalized phenanthrenes.
Methylarene-based PAH synthesis via domino cyclization of 1, 1-difluoro-1-alkenes
Fuchibe, Kohei,Takao, Go,Takahashi, Hiroki,Ijima, Shiori,Ichikawa, Junji
, p. 2019 - 2029 (2019/12/23)
Polycyclic aromatic hydrocarbons (PAHs) containing 4-7 benzene rings were synthesized via a methylarene-based protocol. Trimethyl[2-(trifluoromethyl)allyl]silane was electrophilically benzylated with Ar1CH2Br (prepared from Ar1CH3) to afford 2-trifluoromethyl-1-alkenes that were in turn nucleophilically benzylated with Ar2CH2Li (prepared from Ar2CH3) through an SN2-type reaction to produce 1, 1-difluoroethylenes, which are cyclization precursors bearing two 2-arylethyl groups. Magic acid efficiently promoted the domino FriedelCrafts-type cyclization of these precursors, followed by dehydrogenation that enabled the connection among two aryl groups (Ar1 and Ar2) by forming two benzene rings between them, facilitating the synthesis of the desired higher-order PAHs. With the proposed protocol, the combination of even a limited number of methylarenes can yield a variety of PAHs in diverse configurations.
Oxidative, Iodoarene-Catalyzed Intramolecular Alkene Arylation for the Synthesis of Polycyclic Aromatic Hydrocarbons
Zhao, Zhensheng,Britt, Liam H.,Murphy, Graham K.
, p. 17002 - 17005 (2018/11/01)
A catalytic, metal-free and chemoselective oxidative intramolecular coupling of arene and alkene C?H bonds is reported. The active hypervalent iodine (HVI) reagent, generated catalytically in situ from iodotoluene and meta-chloroperoxybenzoic acid (m-CPBA), reacts with o-vinylbiphenyls to generate polyaromatic hydrocarbons in up to 95 % yield. Experimental evidence suggests the reactions proceed though vinyliodonium and, possibly, vinylenephenonium intermediates.
Synthesis and characterization of phenanthrene derivatives with anticancer property against human colon and epithelial cancer cell lines
Guédouar, Habiba,Aloui, Faouzi,Beltifa, Asma,Ben Mansour, Hedi,Ben Hassine, Béchir
, p. 841 - 849 (2017/06/20)
A variety of polycyclic aromatic hydrocarbons have been synthesized and structurally characterized in our laboratory. Phenanthrene derivatives were efficiently prepared in excellent yields and high purity via a two-step sequence. Heck coupling yielded the corresponding diarylethenes, followed by classical oxidative photocyclization to achieve the expected phenanthrenes. First, we envisioned to synthesize a variety of substituted phenanthrenequinones. Second, we investigated the possibility of a dibenz[a,c]phenazine formation by addition of o-phenylenediamine after completion of the oxidation process. Moreover, because phenanthrenequinones are available so simply, it is likely that other uses will be found for these compounds. For example, 9,10-phenanthrenequinone can be sequentially reduced, alkylated, acetylated, and sulfonated. All the synthesized derivatives were evaluated for cytotoxic activity in vitro against the human epidermoid carcinoma epithelial cells Hep-2 and human colon carcinoma cells Caco-2 using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. From the structure–activity point of view, position and nature of the electron donating and electron withdrawing functional groups attached to the phenanthrene skeleton may contribute to the anticancer action. Interestingly, the analysis of the IC50 values suggests that most compounds exerted cytotoxic effects with selectivity against both cancer cells. Among them, methyl 8-methyl-9,10-phenanthrenequinone-3-carboxylate 11d showed the highest potency with IC50 values of 2.81 and 0.97 μg/mL.
Further insight into the photochemical behavior of 3-aryl-N-(arylsulfonyl)propiolamides: tunable synthetic route to phenanthrenes
Chen, Ming,Zhao, Xinxin,Yang, Chao,Wang, Yanpei,Xia, Wujiong
, p. 12022 - 12026 (2017/03/01)
Reported herein is further insight into the photochemical behaviour of 3-aryl-N-(arylsulfonyl)-propiolamides, which provides a straightforward way to access meaningful phenanthrenes. Mechanistic investigation indicated that aryl migration, C-C coupling, 1,3-hydrogen shift, desulfonylation and elimination were involved in the process. Moreover, this protocol allowed for scale-up using a flow reactor.
Systematic investigations on fused π-system compounds of seven benzene rings prepared by photocyclization of diphenanthrylethenes
Fujino, Shota,Yamaji, Minoru,Okamoto, Hideki,Mutai, Toshiki,Yoshikawa, Isao,Houjou, Hirohiko,Tani, Fumito
, p. 925 - 934 (2017/07/10)
We studied the photoproducts of 1-(n-phenanthryl)-2-(m-phenanthryl)ethenes (nEm; n, m = 1, 3 and 9) for understanding photocyclization patterns based on NMR spectroscopy. The crystal structures of the photoproducts were analyzed by X-ray crystallography, and the photophysical features of the photocyclized molecules were investigated based on emission and transient absorption measurements. Phenanthrene derivatives substituted at the 1- and 3-positions were prepared for synthesizing nEm by photocyclization of stilbene derivatives. We obtained four types of primary photoproducts (n@m) from the corresponding nEm. Two of them were found to have racemic molecular structures in the single crystal determined by X-ray crystallography. Besides the primary photoproducts, two types of secondary photoproducts (n@mPP) were isolated. Fluorescence quantum yields and lifetimes of the obtained photoproducts were determined in solution whereas the definite fluorescence quantum yields were obtained in the powder. Observation of the triplet-triplet absorption spectra in solution by laser photolysis techniques showed that intersystem crossing to the triplet state competes with the fluorescence process.
Air-Driven Potassium Iodide-Mediated Oxidative Photocyclization of Stilbene Derivatives
Matsushima, Tomoya,Kobayashi, Sayaka,Watanabe, Soichiro
, p. 7799 - 7806 (2016/09/09)
A new method has been developed for the potassium iodide-mediated oxidative photocyclization of stilbene derivatives. Compared with conventional iodine-mediated oxidative photocyclization reactions, this new method requires shorter reaction times and affords cyclized products in yields of 45-97%. This reaction proceeds with a catalytic amount of potassium iodide and works in an air-driven manner without the addition of an external scavenger. The radical-mediated oxidative photocyclization of stilbene derivatives using TEMPO was also investigated.