98327-87-8Relevant articles and documents
The Trityl-Cation Mediated Phosphine Oxides Reduction
Landais, Yannick,Laye, Claire,Lusseau, Jonathan,Robert, Frédéric
supporting information, p. 3035 - 3043 (2021/05/10)
Reduction of phosphine oxides into the corresponding phosphines using PhSiH3 as a reducing agent and Ph3C+[B(C6F5)4]? as an initiator is described. The process is highly efficient, reducing a broad range of secondary and tertiary alkyl and arylphosphines, bearing various functional groups in generally good yields. The reaction is believed to proceed through the generation of a silyl cation, which reaction with the phosphine oxide provides a phosphonium salt, further reduced by the silane to afford the desired phosphine along with siloxanes. (Figure presented.).
One-pot synthesis of binaphthyl-based phosphines via direct modification of BINAP
Ye, Jing-Jing,Zhang, Jian-Qiu,Shimada, Shigeru,Han, Li-Biao
supporting information, (2021/11/18)
Herein reported is the convenient and efficient strategy for the preparation of binaphthyl-based phosphines through direct modification to the commercially available 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP) with sodium. In the absence of 15-crown-5-ether, a cyclic sodium dinapthylphospholide intermediate is mainly generated. With 15-crown-5-ether, P-Ph bonds are selectively cleft by Na to produce binaphthyl-based disodium phosphides. The mechanism of selective formation of sodium dinapthylphospholide or binaphthyl-based disodium phosphides is proposed.
Synthesis method of 2, 2 '-bisdiphenylphosphino-1, 1'-binaphthalene
-
, (2020/09/12)
The invention relates to a synthesis method of 2, 2 '-bisdiphenylphosphino-1, 1'-binaphthalene, which is realized by the following steps: step 1, carrying out BUCHERER reaction on 1, 1 '-binaphthyl-2-naphthol to generate 1, 1'-binaphthyl-2, 2 '-diamine; 2, subjecting 1, 1 '-binaphthyl-2, 2'-diamine to a Sandmeyer reaction to generate binaphthyl dibromide; and 3, carrying out a Grignard reaction onthe binaphthyl dibromide and diphenyl phosphine chloride to generate 2, 2 '-bisdiphenylphosphino-1, 1'-binaphthalene (BINAP). Bulk chemical raw materials are used and are low in price and easy to obtain, and the production cost is effectively reduced; the method has the advantages of easily available raw materials, high reaction yield, simple post-treatment, facilitation of industrial amplification, and strong industrial application prospect.
Synthetic method of 2,2'-double diphenyl phosphine-1,1'-dinaphthalene
-
Paragraph 0018; 0033; 0034, (2018/10/11)
The invention discloses a synthetic method of 2,2'-double diphenyl phosphine-1,1'-dinaphthalene. The method comprises the following steps: adding a lithium metal sheet, a ligand, 2,2'-diethoxy-1,1'-dinaphthalene and an ethers solvent are added in a reaction still, heating the materials to the temperature of 60-140 DEG C, reacting the materials for 6-12 hours, dropping chlorodiphenylphosphine at the temperature of 0 DEG C, heating the material to room temperature, and obtaining the product after the reaction is completed; equivalent water quenching is carried out, a product solution is concentrated and filtered, a filter cake is washed with methanol, and vacuum drying is carried out to obtain the product 2,2'-double diphenyl phosphine-1,1'-dinaphthalene (BINAP). The method has the advantages of high yield, low preparation cost, simple post-treatment, high product purity, and is suitable for process enlargement.
Metal-Free Reduction of Phosphine Oxides, Sulfoxides, and N-Oxides with Hydrosilanes using a Borinic Acid Precatalyst
Chardon, Aurélien,Maubert, Orianne,Rouden, Jacques,Blanchet, Jér?me
, p. 4460 - 4464 (2017/11/22)
The general reduction of phosphine oxides, sulfoxides, and amine N-oxides was achieved by combining bis(2-chlorophenyl)borinic acid with phenylsilane. The reaction was shown to tolerate a wide range of substrates and could be performed under mild conditions, with only 2.5 mol % of the easily synthesized catalyst. Mechanistic investigations pointed to a key borohydride as the real catalyst and at bis(2-chlorophenyl)borinic acid as a precatalyst.
Chemoselective Reduction of Phosphine Oxides by 1,3-Diphenyl-Disiloxane
Buonomo, Joseph A.,Eiden, Carter G.,Aldrich, Courtney C.
supporting information, p. 14434 - 14438 (2017/10/23)
Reduction of phosphine oxides to the corresponding phosphines represents the most straightforward method to prepare these valuable reagents. However, existing methods to reduce phosphine oxides suffer from inadequate chemoselectivity due to the strength of the P=O bond and/or poor atom economy. Herein, we report the discovery of the most powerful chemoselective reductant for this transformation to date, 1,3-diphenyl-disiloxane (DPDS). Additive-free DPDS selectively reduces both secondary and tertiary phosphine oxides with retention of configuration even in the presence of aldehyde, nitro, ester, α,β-unsaturated carbonyls, azocarboxylates, and cyano functional groups. Arrhenius analysis indicates that the activation barrier for reduction by DPDS is significantly lower than any previously calculated silane reduction system. Inclusion of a catalytic Br?nsted acid further reduced the activation barrier and led to the first silane-mediated reduction of acyclic phosphine oxides at room temperature.
Highly efficient reduction of tertiary phosphine oxides and sulfides with amine-assisted aluminum hydrides under mild conditions
Yang, Shuyan,Han, Xinxin,Luo, Minmin,Gao, Jing,Chu, Wenxiang,Ding, Yuqiang
, p. 1156 - 1160 (2015/06/30)
Reduction of tertiary phosphine oxides and sulfides into the corresponding phosphines with amine-assisted aluminum hydrides has been studied. The method is characterized by mild conditions, short reaction time, high efficiency, and expanded substrate scope. The new method is an alternative to the currently used methods of reducing phosphine oxides or recycling phosphines engaged in organic reactions.
Improved syntheses of phosphine ligands by direct coupling of diarylbromophosphine with organometallic reagents
Liu, Lei,Wu, Hai-Chen,Yu, Jin-Quan
supporting information; experimental part, p. 10828 - 10831 (2011/11/04)
Br versus Cl: It is found that the use of diarylbromophosphines instead of diarylchlorophosphines is crucial for their direct coupling with binaphthylmagnesium bromide or BINOL triflate. This finding has led to an improved preparation of both electron-deficient BINAP-type phosphine ligands and several important Buchwald's ligands. Copyright
Process research on the asymmetric hydrogenation of a benzophenone for developing the manufacturing process of the squalene synthase inhibitor TAK-475
Goto, Mitsutaka,Konishi, Takahiro,Kawaguchi, Shinji,Yamada, Masatoshi,Nagata, Toshiaki,Yamano, Mitsuhisa
, p. 1178 - 1184 (2011/12/16)
A practical synthetic method for the synthesis of the chiral benzhydrol 8, which is the key intermediate of the squalene synthase inhibitor TAK-475 (1), has been developed. The method, via asymmetric hydrogenation of the benzophenone 7, employed Noyori's ruthenium precatalyst of the type [RuCl 2(diphosphine)(diamine). We focused on tuning of the chiral diphosphine, and have discovered a novel ligand, DADMP-BINAP (18c), for the catalyst that has allowed reduction of the operating pressure in the asymmetric hydrogenation. The precatalyst containing 18c performed effectively at low hydrogen pressure (1 MPa) with sufficient enantioselectivity, and the result enabled us to successfully obtain enantiomerically pure 8 on a multikilogram scale.
BINAP versus BINAP(O) in asymmetric intermolecular Mizoroki-Heck reactions: Substantial effects on selectivities
Woeste, Thorsten H.,Oestreich, Martin
supporting information; experimental part, p. 11914 - 11918 (2011/11/29)
2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl (BINAP) was employed as chiral ligand in the enantioselective intermolecular Mizoroki-Heck reaction, whereas the use of cognate BINAP(O) (monooxidized BINAP) is unprecedented. The regio- and enantioselectivity of the arylation of representative cyclic alkenes changes dramatically in the presence of hemilabile BINAP(O) instead of BINAP. The arylation of 2,3-dihydrofuran is perfectly regiodivergent (98:2 versus 0:100) and the arylation of cyclopentene is only enantioselective with BINAP(O) [60 versus 10% enantiomeric excess (ee)]. Use of [Pd2(dba)3]·dba (dba=dibenzylideneacetone) instead of Pd(OAc)2 produces as high as 86% ee in the arylation of cyclopentene.