100-81-2Relevant articles and documents
Selective catalytic transfer hydrogenation of nitriles to primary amines using Pd/C
Vilches-Herrera, Marcelo,Werkmeister, Svenja,Junge, Kathrin,Boerner, Armin,Beller, Matthias
, p. 629 - 632 (2014)
The catalytic transfer hydrogenation of (hetero)aryl nitriles using ammonium formate has been investigated in detail. In the presence of commercially available Pd/C, a straightforward and selective reduction is achieved without any additives under mild conditions.
Bifunctional N-Doped Co@C Catalysts for Base-Free Transfer Hydrogenations of Nitriles: Controllable Selectivity to Primary Amines vs Imines
Long, Jilan,Shen, Kui,Li, Yingwei
, p. 275 - 284 (2017)
The transfer hydrogenation of nitriles is an important and alternative strategy to produce primary amines or imines, both of which play a crucial role in the synthesis of fine chemicals and pharmaceuticals. Nevertheless, developing highly active bifunctional catalyst system with controllable selectivity for these reactions still remains a huge challenge. In this study, we presented a bifunctional N-doped Co@C catalyst system (Co@NC) for the selective transfer hydrogenation of nitriles into either primary amines or imines. The Co@NC was prepared by the direct pyrolysis of an N-containing Co-MOF under an inert atmosphere, where the N-containing ligands could be transformed into highly graphitic N-doped carbon, endowing the catalysts with high-density special basic sites, while the Co2+ ions were reduced to uniform Co nanoparticles which were dispersed on or embedded in N-doped graphitic structures. Under base-free conditions with isopropyl alcohol as both proton donor and solvent, the optimized Co@NC-900 (obtained at 900 °C) catalyst could convert nitriles into primary amines or imines at will with surprising selectivities (mostly higher than 90%), depending on the solvent volume added to the reaction systems. Furthermore, a possible reaction mechanism was proposed. The N-derived basic sites on Co@NC could play a role similar to that of the base additives, which not only inhibit the formation of polyamine or prevent the products stacked on the surface of catalysts but also effectively promote the transfer hydrogenation of nitriles. The generated corresponding primary imines could controllably attack the primary imine intermediates to form imines by adjusting the concentration of Co@NC. It is clear that this strategy offers a high-performance catalyst system for base-free transfer hydrogenations of nitriles to selectively produce primary amines vs imines.
Turning the product selectivity of nitrile hydrogenation from primary to secondary amines by precise modification of Pd/SiC catalysts using NiO nanodots
, ()
The selectivity of supported metal catalysts is mainly determined by the active metallic component, and thus turning the selectivity to a completely different product is rarely achieved by modification of the catalysts. Hydrogenation of nitriles is an efficient and environmentally benign route for the synthesis of valuable amines, but it usually produces mixtures of primary, secondary and even tertiary amines. Herein we report that the selectivity of Pd/SiC catalysts for the hydrogenation of nitriles with H2 can be turned from primary to secondary amines by modification of NiO nanodots. In the modified catalysts, the NiO nanodots act as reactive sites to consume hydrogen radicals on the Pd surface, and thus prolong the lifetime of an imine intermediate that determines the product selectivity. Under mild conditions (30 °C, atmospheric H2), Pd/SiC and NiO-Pd/SiC catalysts exhibit high selectivity to primary (94%) and secondary (99%) amines, respectively.
A ppm level Rh-based composite as an ecofriendly catalyst for transfer hydrogenation of nitriles: Triple guarantee of selectivity for primary amines
Liu, Lei,Li, Jifan,Ai, Yongjian,Liu, Yuhong,Xiong, Jialiang,Wang, Hongdong,Qiao, Yijun,Liu, Wenrui,Tan, Shanchao,Feng, Shaofei,Wang, Kunpeng,Sun, Hongbin,Liang, Qionglin
, p. 1390 - 1395 (2019)
Hydrogenation of nitriles to afford amines under mild conditions is a challenging task with an inexpensive heterogeneous catalyst, and it is even more difficult to obtain primary amines selectively because of the accompanying self-coupling side reactions. An efficient catalytic system was designed as Fe3O4@nSiO2-NH2-RhCu@mSiO2 to prepare primary amines through the transfer hydrogenation of nitrile compounds with economical HCOOH as the hydrogen donor. The loading of rhodium in the catalyst could be at the ppm level, and the TOF reaches 6803 h-1 for Rh. This catalytic system has a wide substrate range including some nitriles that could not proceed in the previous literature. The experimental results demonstrate that the excellent selectivity for primary amines is guaranteed by three tactics, which are the strong active site, the inhibition of side products by the hydrogen source and the special pore structure of the catalyst. In addition, the catalyst could be reused ten times without activity loss through convenient magnetic recovery.
Cobalt-Catalyzed Hydrogenative Transformation of Nitriles
Zhang, Shaoke,Duan, Ya-Nan,Qian, Yu,Tang, Wenyue,Zhang, Runtong,Wen, Jialin,Zhang, Xumu
, p. 13761 - 13767 (2021/11/17)
Here, we report the transformation of nitrile compounds in a hydrogen atmosphere. Catalyzed by a cobalt/tetraphosphine complex, hydrogenative coupling of unprotected indoles with nitriles proceeds smoothly in a basic medium, yielding C3 alkylated indoles. In addition, the direct hydrogenation of nitriles under the same conditions yielded primary amines. Isotope labeling experiments, along with a series of control experiments, revealed a reaction pathway that involves nucleophilic addition of indoles and 1,4-reduction of a conjugate imine intermediate. Different from reductive alkylation of indoles under an acidic condition, E1cB elimination is believed to occur in this base-promoted hydrogenative coupling reaction.
Method for preparing primary amine by catalytically reducing nitrile compounds through nano-porous palladium catalyst
-
Paragraph 0069-0072, (2021/05/29)
The invention belongs to the technical field of heterogeneous catalysis, and provides a method for preparing primary amine by catalytically reducing nitrile compounds with a nano-porous palladium catalyst. According to the invention, aromatic and aliphatic nitrile compounds are adopted as raw materials, nano-porous palladium is adopted as a catalyst, ammonia borane is adopted as a hydrogen source, no additional additive is added, and selective hydrogenation is performed to prepare the corresponding primary amine. The method provided by the invention has the beneficial effects of mild reaction conditions, no additive, environmental protection, no need of hydrogen, simple operation, stable hydrogen source, safety, harmlessness, high conversion rate, high selectivity and good catalyst stability, and makes industrialization possible.
Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity
Tseliou, Vasilis,Schilder, Don,Masman, Marcelo F.,Knaus, Tanja,Mutti, Francesco G.
supporting information, p. 3315 - 3325 (2020/12/11)
The l-lysine-?-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ?-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot “hydrogen-borrowing” cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing “alcohol aminase” activity.
Self-regulated catalysis for the selective synthesis of primary amines from carbonyl compounds
Fan, Xiaomeng,Gao, Jin,Gao, Mingxia,Jia, Xiuquan,Ma, Jiping,Xu, Jie
supporting information, p. 7115 - 7121 (2021/09/28)
Most current processes for the general synthesis of primary amines by reductive amination are performed with enormously excessive amounts of hazardous ammonia. It remains unclear how catalysts should be designed to regulate amination reaction dynamics at a low ammonia-to-substrate ratio for the quantitative synthesis of primary amines from the corresponding carbonyl compounds. Herein we show a facile control of the reaction selectivity in the layered boron nitride supported ruthenium catalyzed reductive amination reaction. Specifically, locating ruthenium to the edge surface of layered boron nitride leads to an increased hydrogenation activity owing to the enhanced interfacial electronic effects between ruthenium and the edge surface of boron nitride. This enables self-accelerated reductive amination reactions which quantitatively synthesize structurally diverse primary amines by reductive amination of carbonyl compounds with twofold ammonia. This journal is
Benzimidazole fragment containing Mn-complex catalyzed hydrosilylation of ketones and nitriles
Ganguli, Kasturi,Mandal, Adarsha,Sarkar, Bidisha,Kundu, Sabuj
, (2020/08/13)
The synthesis of a new bidentate (NN)–Mn(I) complex is reported and its catalytic activity towards the reduction of ketones and nitriles is studied. On comparing the reactivity of various other Mn(I) complexes supported by benzimidazole ligand, it was observed that the Mn(I) complexes bearing 6-methylpyridine and benzimidazole fragments exhibited the highest catalytic activity towards monohydrosilylation of ketones and dihydrosilylation of nitriles. Using this protocol, a wide range of ketones were selectively reduced to the corresponding silyl ethers. In case of unsaturated ketones, the chemoselective reduction of carbonyl group over olefinic bonds was observed. Additionally, selective dihydrosilylation of several nitriles were also achieved using this complex. Mechanistic investigations with radical scavengers suggested the involvement of radical species during the catalytic reaction. Stoichiometric reaction of the Mn(I) complex with phenylsilane revealed the formation of a new Mn(I) complex.
Half-sandwiched ruthenium complex containing carborane schiff base ligand and preparation and application thereof
-
Paragraph 0067-0071, (2020/12/09)
The invention relates to a half-sandwiched ruthenium complex containing a carborane schiff base ligand and a preparation and an application thereof. The preparation method specifically comprises the following steps; i) dissolving o-carborane formaldehyde and aromatic amine in an organic solvent, carrying out reaction at 60-100 DEG C for 8-12h, cooling to room temperature after the reaction; ii) adding n-butyllithium, carrying out reaction at room temperature for 1.5-2.5h; ii) adding phellandrene ruthenium chloride dimer, carrying out reaction at room temperature for 3-6h, and obtaining the half-sandwiched ruthenium complex through separation. The half-sandwiched ruthenium complex is applied to catalyze transfer hydrogenation reaction of nitrile compounds. Compared with the prior art, the complex of the present invention is not sensitive to air and water, has stable properties, and shows high-efficiency catalytic activity in catalyzing the transfer hydrogenation reaction of nitrile compounds. The preparation method of the complex is simple and green, high in yield, mild in reaction conditions and good in universality.