1883-13-2Relevant articles and documents
Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis
Di Lorenzo, Flaviana,Speciale, Immacolata,Silipo, Alba,Alías-Villegas, Cynthia,Acosta-Jurado, Sebastián,Rodríguez-Carvajal, Miguel-ángel,Dardanelli, Marta S.,Palmigiano, Angelo,Garozzo, Domenico,Ruiz-Sainz, José-Enrique,Molinaro, Antonio,Vinardell, José-María
, p. 10969 - 10987 (2021/01/07)
Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-L-glyc-ero-L-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing b-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its a-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.
Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans
Jovanovic, Milos,Radivojevic, Jelena,O'Connor, Kevin,Blagojevic, Stevan,Begovic, Biljana,Lukic, Vera,Nikodinovic-Runic, Jasmina,Savic, Vladimir
, p. 209 - 217 (2019/03/23)
Rhamnolipids are biodegradable low toxic biosurfactants which exert antimicrobial and anti-biofilm properties. They have attracted much attention recently due to potential applications in areas of bioremediation, therapeutics, cosmetics and agriculture, however, the full potential of these versatile molecules is yet to be explored. Based on the facts that many naturally occurring lipopeptides are potent antimicrobials, our study aimed to explore the potential of replacing rhamnose in rhamnolipids with amino acids thus creating lipopeptides that would mimic or enhance properties of the parent molecule. This would allow not only for more economical and greener production but also, due to the availability of structurally different amino acids, facile manipulation of physico-chemical and biological properties. Our synthetic efforts produced a library of 43 lipopeptides revealing biologically more potent molecules. The structural changes significantly increased, in particular, anti-biofilm properties against Candida albicans, although surface activity of the parent molecule was almost completely abolished. Our findings show that the most active compounds are leucine derivatives of 3-hydroxy acids containing benzylic ester functionality. The SAR study demonstrated a further increase in activity with aliphatic chain elongation. The most promising lipopeptides 15, 23 and 36 at 12.5 μg/mL concentration allowed only 14.3%, 5.1% and 11.2% of biofilm formation, respectively after 24 h. These compounds inhibit biofilm formation by preventing adhesion of C. albicans to abiotic and biotic surfaces.
Succinct synthesis of saturated hydroxy fatty acids and: In vitro evaluation of all hydroxylauric acids on FFA1, FFA4 and GPR84
Kaspersen, Mads Holmgaard,Jenkins, Laura,Dunlop, Julia,Milligan, Graeme,Ulven, Trond
, p. 1360 - 1365 (2017/07/07)
Saturated hydroxy fatty acids make up a class of underexplored lipids with potentially interesting biological activities. We report a succinct and general synthetic route to saturated hydroxy fatty acids hydroxylated at position 6 or higher, and exemplify this with the synthesis of hydroxylauric acids. All regioisomers of hydroxylauric acids were tested on free fatty acid receptors FFA1, FFA4 and GPR84. The results show that the introduction of a hydroxy group and its position have a high impact on receptor activity.
A Continuous, Fluorogenic Sirtuin 2 Deacylase Assay: Substrate Screening and Inhibitor Evaluation
Galleano, Iacopo,Schiedel, Matthias,Jung, Manfred,Madsen, Andreas S.,Olsen, Christian A.
, p. 1021 - 1031 (2016/02/23)
Sirtuins are important regulators of lysine acylation, which is implicated in cellular metabolism and transcriptional control. This makes the sirtuin class of enzymes interesting targets for development of small molecule probes with pharmaceutical potential. To achieve detailed profiling and kinetic insight regarding sirtuin inhibitors, it is important to have access to efficient assays. In this work, we report readily synthesized fluorogenic substrates enabling enzyme-economical evaluation of SIRT2 inhibitors in a continuous assay format as well as evaluation of the properties of SIRT2 as a long chain deacylase enzyme. Novel enzymatic activities of SIRT2 were thus established in vitro, which warrant further investigation, and two known inhibitors, suramin and SirReal2, were profiled against substrates containing ε-N-acyllysine modifications of varying length.
The synthesis of medium-chain-length β-hydroxy esters via the reformatsky reaction
Sailer, Miloslav,Dubicki, Krystyn I.,Sorensen, John L.
, p. 79 - 82 (2015/02/02)
The synthesis of medium-chain-length β-hydroxy esters in good yield via the Reformatsky reaction is described. This work will be used as the basis for further investigation of hydroxyalkanoate polymers as potential feedstock for biofuel production.
Photobiocatalytic decarboxylation for olefin synthesis
Zachos, Ioannis,Ga?meyer, Sarah Katharina,Bauer, Daniel,Sieber, Volker,Hollmann, Frank,Kourist, Robert
supporting information, p. 1918 - 1921 (2015/02/05)
Here, we describe the combination of OleTJE with a light-driven in situ H2O2-generation system for the selective and quantitative conversion of fatty acids into terminal alkenes. The photobiocatalytic system shows clear advantages regarding enzyme activity and yield, resulting in a simple and efficient system for fatty acid decarboxylation.
Total synthesis of fellutamide b and deoxy-fellutamides B, C, and D
Giltrap, Andrew M.,Cergol, Katie M.,Pang, Angel,Britton, Warwick J.,Payne, Richard J.
, p. 2382 - 2397 (2013/08/23)
The total syntheses of the marine-derived lipopeptide natural product fellutamide B and deoxy-fellutamides B, C, and D are reported. These compounds were accessed through a novel solid-phase synthetic strategy using Weinreb amide-derived resin. As part of the synthesis, a new enantioselective route to (3R)-hydroxy lauric acid was developed utilizing a Brown allylation reaction followed by an oxidative cleavage-oxidation sequence as the key steps. The activity of these natural products, and natural product analogues was also assessed against Mycobacterium tuberculosis in vitro.
AMIDE COMPOUND OR SALT THEREOF, AND BIOFILM FORMATION INHIBITOR, BIOFILM REMOVER AND BACTERICIDE EACH USING THE AMIDE COMPOUND OR SALT THEREOF
-
Page/Page column 15, (2009/07/18)
The present invention provides a new amide compound and salt thereof that is capable of inhibiting biofilm formation or removing deposited biofilm. The present invention also provides a biofilm formation inhibitor or a biofilm remover containing the amide compound or salt thereof as an active ingredient. An amide compound or salt thereof according to the present invention is denoted by General Formula (1): wherein R1 is a hydrogen atom or a hydroxyl group, R2 is a C5-12 alkyl group, and Q is a substituent denoted by Formula (Q1) or (Q2), wherein n and m are 0 or 1.