20193-23-1Relevant articles and documents
Biocatalytic N-Alkylation of Amines Using Either Primary Alcohols or Carboxylic Acids via Reductive Aminase Cascades
Ramsden, Jeremy I.,Heath, Rachel S.,Derrington, Sasha R.,Montgomery, Sarah L.,Mangas-Sanchez, Juan,Mulholland, Keith R.,Turner, Nicholas J.
, p. 1201 - 1206 (2019/01/21)
The alkylation of amines with either alcohols or carboxylic acids represents a mild and safe alternative to the use of genotoxic alkyl halides and sulfonate esters. Here we report two complementary one-pot systems in which the reductive aminase (RedAm) from Aspergillus oryzae is combined with either (i) a 1° alcohol/alcohol oxidase (AO) or (ii) carboxylic acid/carboxylic acid reductase (CAR) to affect N-alkylation reactions. The application of both approaches has been exemplified with respect to substrate scope and also preparative scale synthesis. These new biocatalytic methods address issues facing alternative traditional synthetic protocols such as harsh conditions, overalkylation and complicated workup procedures.
Catalytic hydrogenation of amides to amines under mild conditions
Stein, Mario,Breit, Bernhard
supporting information, p. 2231 - 2234 (2013/03/28)
Under (not so much) pressure: A general method for the hydrogenation of tertiary and secondary amides to amines with excellent selectivity using a bimetallic Pd-Re catalyst has been developed. The reaction proceeds under low pressure and comparatively low temperature. This method provides organic chemists with a simple and reliable tool for the synthesis of amines. Copyright
Reductive monoalkylation of aromatic and aliphatic nitro compounds and the corresponding amines with nitriles
Nacario, Ruel,Kotakonda, Shailaja,Fouchard, David M. D.,Tillekeratne, L. M. Viranga,Hudson, Richard A.
, p. 471 - 474 (2007/10/03)
(Chemical Equation Presented) A simple, selective, rapid, and efficient procedure for the synthesis of secondary amines from the reductive alkylation of either aliphatic or aromatic nitro compounds and the corresponding amines is reported. Ammonium formate is used as the hydrogen source and Pd/C as the hydrogen transfer catalyst. The reaction is carried out at room temperature. The rate differences for the preferential formation of secondary over tertiary products are due to both steric and electronic factors.