2280-01-5Relevant articles and documents
Synthesis of tripeptides containing d-Trp substituted at the indole ring, assessment of opioid receptor binding and in vivo central antinociception
De Marco, Rossella,Bedini, Andrea,Spampinato, Santi,Gentilucci, Luca
supporting information, p. 6861 - 6866 (2014/10/15)
The noncationizable tripeptide Ac-d-Trp-Phe-GlyNH2 was recently proposed as a novel minimal recognition motif for μ-opioid receptor. The introduction of different substituents (methyl, halogens, nitro, etc.) at the indole of d-Trp significantly influenced receptor affinities and resulted in serum stability and in a measurable effect on central antinociception in mice after ip administration.
Resolution of N-protected amino acid esters using whole cells of Candida parapsilosis ATCC 7330
Stella, Selvaraj,Chadha, Anju
experimental part, p. 457 - 460 (2010/06/21)
Whole cells of Candida parapsilosis ATCC 7330 were used for the resolution of N-acetyl amino acid esters. Excellent enantioselectivities (E = 40 to >500) were achieved for the resolution of N-protected protein and non-protein amino acid esters giving good yields (28-50%) and high enantiomeric excesses (up to >99%) for both enantiomers.
The biosynthetic pathway of crucifer phytoalexins and phytoanticipins: De novo incorporation of deuterated tryptophans and quasi-natural compounds
Pedras, M. Soledade C.,Okinyo-Owiti, Denis P.,Thoms, Ken,Adio, Adewale M.
experimental part, p. 1129 - 1138 (2010/06/21)
Although several biosynthetic intermediates in pathways to cruciferous phytoalexins and phytoanticipins are common, questions regarding the introduction of substituents at N-1 of the indole moiety remain unanswered. Toward this end, we investigated the potential incorporations of several perdeuterated d- and l-1′-methoxytryptophans, d- and l-tryptophans and other indol-3-yl derivatives into pertinent phytoalexins and phytoanticipins (indolyl glucosinolates) produced in rutabaga (Brassica napus L. ssp. rapifera) roots. In addition, we probed the potential transformations of quasi-natural compounds, these being analogues of biosynthetic intermediates that might lead to "quasi-natural" products (products similar to natural products but not produced under natural conditions). No detectable incorporations of deuterium labeled 1′-methoxytryptophans into phytoalexins or glucobrassicin were detected. l-tryptophan was incorporated in a higher percentage than d-tryptophan into both phytoalexins and phytoanticipins. However, in the case of the phytoalexin rapalexin A, both d- and l-tryptophan were incorporated to the same extent. Furthermore, the transformations of both 1′-methylindolyl-3′-acetaldoxime and 1′-methylindolyl-3′-acetothiohydroxamic acid (quasi-natural products) into 1′-methylglucobrassicin but not into phytoalexins suggested that post-aldoxime enzymes in the biosynthetic pathway of indolyl glucosinolates are not substrate-specific. Hence, it would appear that the 1-methoxy substituent of the indole moiety is introduced downstream from tryptophan and that the post-aldoxime enzymes of the glucosinolate pathway are different from the enzymes of the phytoalexin pathway. A higher substrate specificity of some enzymes of the phytoalexin pathway might explain the relatively lower structural diversity among phytoalexins than among glucosinolates.
Heat-stable D-aminoacylase
-
, (2008/06/13)
The present invention provides a novel D-aminoacylase, as well as method for producing a D-amino acid using the same. In order to achieve the above objective, the present inventors have succeeded in purifying heat-stable D-aminoacylase from microorganisms belonging to the genus Streptomyces by combining various purification methods. Furthermore, the present inventors found that the purified heat-stable D-aminoacylase is useful in industrial production of D-amino acids. By utilizing the heat-stable D-aminoacylase, it is possible to readily and efficiently produce the corresponding D-amino acids from N-acetyl-DL-amino acids (for example, N-acetyl-DL-methionine, N-acetyl-DL-valine, N-acetyl-DL-tryptophan, N-acetyl-DL-phenylalanine, N-acetyl-DL-alanine, N-acetyl-DL-leucine, and so on).
Catalysis by β-cyclodextrin in the reaction of p-nitrophenyl acetate with α-amino acids
Barra, Monica,Rossi, Rita H. de
, p. 1124 - 1130 (2007/10/02)
The reactions of p-nitrophenyl acetate, 1, with both enantiomers of the following α-amino acids: alanine (2a), methionine (2b), leucine (2c), and tryptophan (2d), were studied in the presence of β-cyclodextrin (β-CD).All the reactions were catalyzed by β-
Efficient Asymmetric Hydrogenations of (Z)-2-Acetamidoacrylic Acid Derivatives with the Cationic Rhodium Complex of (2S,4S)-MOD-BPPM
Takahashi, Hisashi,Achiwa, Kazuo
, p. 305 - 308 (2007/10/02)
The preparation of (2S,4S)-MOD-BPPM ((2S,4S)-N-(t-butoxycarbonyl)-4-phosphino>-2-phosphino>methyl>pyrrolidine) and its application to highly effective asymmetric hydrogenations of (Z)-2-acetamidoacrylic acid derivatives are described.