Relevant articles and documents
All total 20 Articles be found
Continuous flow study of isoeugenol to vanillin: A bio-based iron oxide catalyst
Filiciotto, Layla,Márquez-Medina, María Dolores,Pineda, Antonio,Balu, Alina M.,Romero, Antonio A.,Angelici, Carlo,de Jong, Ed,van der Waal, Jan C.,Luque, Rafael
, p. 281 - 290 (2019/12/25)
The use of a biorefinery co-product, such as humins, in combination with an iron precursor in a solvent-free method yields a catalytic material with potential use in selective oxidative cleavage reactions. In particular, this catalyst was found active in the hydrogen-peroxide assisted oxidation of a naturally extracted molecule, isoeugenol, to high added-value flavouring agent, vanillin. By carrying out the reaction in continuous flow, not only a better understanding of the reaction mechanism and of the catalyst deactivation can be achieved, but also important insights for optimised conditions can be developed. The findings of this paper could pave the way to a more sustainable process for the production of a valuable food and perfume additive, vanillin.
Task-Specific Catalyst Development for Lignin-First Biorefinery toward Hemicellulose Retention or Feedstock Extension
Qiu, Shi,Guo, Xuan,Huang, Yong,Fang, Yunming,Tan, Tianwei
, p. 944 - 954 (2019/01/08)
A catalytic reductive fractionation method for lignocellulosic biomass, termed lignin-first biorefinery, has emerged, which emphasises preferential depolymerization of the protolignin. However, in most studies, the lignin-first biorefinery is only effective for hardwood that has a high syringyl/guaiacol (S/G) ratio of lignin building blocks, and the degradation of hemicellulose also takes place simultaneously to a certain degree. In this study, two task-specific catalysts were developed to realize hemicellulose retention and feedstock extension through the development of an objective performance–structure relationship. It is found that MoxC/carbon nanotube (CNT) is highly selective in the cleavage of bonds between carbohydrates and lignin and ether bonds in lignin during the catalytic reductive fractionation of hardwood, leading to a carbohydrate (both cellulose and hemicellulose) retention degree in the solid product close to the theoretical maximum and a delignification degree as high as 98.1 %. Ru/CMK-3 is demonstrated to be effective in the catalytic reductive fractionation of softwood and grass, resulting from its weak acidity and high mesoporosity.
Radical synthesis of tetrameric lignin model compound
Ouyang, Xin-Ping,Yang, Yun,Zhu, Guo-Dian,Qiu, Xue-Qing
, p. 980 - 982 (2015/08/18)
Abstract The lack of suitable lignin model compound limits the understanding of the characteristics of lignin, and hence hinders the efficient utilization of this kind of bioresource. A tetramer phenolic lignin model compound composed of 5-5, α-O-4 and β-