4534-74-1Relevant articles and documents
Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization
Dick, Graham R.,Komarova, Anastasia O.,Luterbacher, Jeremy S.
supporting information, p. 1285 - 1293 (2022/02/17)
Existing lignocellulosic biomass fractionation processes produce lignin with random, interunit C-C bonds that inhibit its depolymerization and constrain its use. Here, we exploit the aldehyde stabilization of lignin to tailor its structure, functionality,
Chemoselective and Tandem Reduction of Arenes Using a Metal–Organic Framework-Supported Single-Site Cobalt Catalyst
Antil, Neha,Kumar, Ajay,Akhtar, Naved,Begum, Wahida,Chauhan, Manav,Newar, Rajashree,Rawat, Manhar Singh,Manna, Kuntal
supporting information, p. 1031 - 1040 (2022/01/19)
The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal–organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation–hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co–H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base–metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.
Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh&at;SILP Catalyst
Bordet, Alexis,Emondts, Meike,Leitner, Walter,Moos, Gilles
supporting information, p. 11977 - 11983 (2020/06/02)
Rhodium nanoparticles immobilized on an acid-free triphenylphosphonium-based supported ionic liquid phase (Rh&at;SILP(Ph3-P-NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh&at;SILP(Ph3-P-NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non-benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh&at;SILP(Ph3-P-NTf2) catalyst opens the way to the production of a wide range of high-value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin-derived aromatic ketones.
Ru/hydroxyapatite as a dual-functional catalyst for efficient transfer hydrogenolytic cleavage of aromatic ether bonds without additional bases
Hua, Manli,Song, Jinliang,Xie, Chao,Wu, Haoran,Hu, Yue,Huang, Xin,Han, Buxing
, p. 5073 - 5079 (2019/09/30)
Cleavage of aromatic ether bonds is a key step for lignin valorization, and the development of novel heterogeneous catalysts with high activity is crucial. Herein, bifunctional Ru/hydroxyapatite has been prepared via ion exchange and subsequent reduction. The obtained Ru/hydroxyapatite could efficiently catalyze the cleavage of various compounds containing aromatic ether bonds via transfer hydrogenolysis without additional bases. Systematic studies indicated that the basic nature of hydroxyapatite and electron-enriched Ru sites resulted in the high activity of the catalyst. A mechanism study revealed that the direct cleavage of aromatic ether bonds was the main reaction pathway.
Ductile Pd-Catalysed Hydrodearomatization of Phenol-Containing Bio-Oils Into Either Ketones or Alcohols using PMHS and H2O as Hydrogen Source
Di Francesco, Davide,Subbotina, Elena,Rautiainen, Sari,Samec, Joseph S. M.
supporting information, p. 3924 - 3929 (2018/09/14)
A series of phenolic bio-oil components were selectively hydrodearomatized by palladium on carbon into the corresponding ketones or alcohols in excellent yields using polymethylhydrosiloxane and water as reducing agent. The selectivity of the reaction was governed by the water concentration where selectivity to alcohol was favoured at higher water concentrations. As phenolic bio-oil examples cardanol and beech wood tar creosote were studied as substrate to the developed reaction conditions. Cardanol was hydrodearomatized into 3-pentadecylcyclohexanone in excellent yield. From beech wood tar creosote, a mixture of cyclohexanols was produced. No hydrodeoxygenation occurred, suggesting the applicability of the reported method for the production of ketone-alcohol oil from biomass. (Figure presented.).
A stable and practical nickel catalyst for the hydrogenolysis of C-O bonds
Cui, Xinjiang,Yuan, Hangkong,Junge, Kathrin,Topf, Christoph,Beller, Matthias,Shi, Feng
, p. 305 - 310 (2017/01/24)
The selective hydrogenolysis of C-O bonds constitutes a key step for the valorization of biomass including lignin fragments. Moreover, this defunctionalization process offers the possibility of producing interesting organic building blocks in a straightforward manner from oxygenated compounds. Herein, we demonstrate the reductive hydrogenolysis of a wide variety of ethers including diaryl, aryl-alkyl and aryl-benzyl derivatives catalyzed by a stable heterogeneous NiAlOx catalyst in the presence of a Lewis acid (LA). The special feature of this catalyst system is the formation of substituted cyclohexanols from the corresponding aryl ether.
Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over a Ru-solid base bifunctional catalyst
Xu, Guang-Yue,Guo, Jian-Hua,Qu, Yan-Chao,Zhang, Ying,Fu, Yao,Guo, Qing-Xiang
, p. 5510 - 5517 (2016/10/21)
Cyclohexanol and alkyl cyclohexanol are important chemical intermediates. It is meaningful to prepare cyclohexanols from non-fossil-based biomass. Here we report Ru/ZrO2-La(OH)3, a metal-solid base bifunctional catalyst, to show its excellent performance on the partial hydrodeoxygenation of lignin-derived phenols. Guaiacol could be converted to cyclohexanol with a 91.6% yield in water. Alkyl phenols with one or two methoxy groups were converted into alkyl cyclohexanols with yields over 86.9%. The catalyst had good activity of removing a methoxy group and retaining a hydroxyl group. In this catalyst, Zr and La interacted with each other to form a mixed (hydr)oxide, thus making ZrO2-La(OH)3 a stable support. Ru was highly dispersed on the ZrLa support. The pathway from guaiacol to cyclohexanol was investigated and proposed as two parallel ways, demethoxylation followed by hydrogenation (I), the saturation of the aromatic ring through hydrogenation and then demethoxylation through direct hydrogenolysis (II).
Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles
Shi, Juanjuan,Zhao, Mengsi,Wang, Yingyu,Fu, Jie,Lu, Xiuyang,Hou, Zhaoyin
supporting information, p. 5842 - 5848 (2016/05/24)
Fast pyrolysis of biomass for bio-oil production is a direct route to renewable liquid fuels, but raw bio-oil must be upgraded in order to remove easily polymerized compounds (such as phenols and furfurals). Herein, a synthesis strategy for graphene encapsulated Ru nanoparticles (NPs) on carbon sheets (denoted as Ru@G-CS) and their excellent performance for the upgrading of raw bio-oil were reported. Ru@G-CS composites were prepared via the direct pyrolysis of mixed glucose, melamine and RuCl3 at varied temperatures (500-800 °C). Characterization indicated that very fine Ru NPs (2.5 ± 1.0 nm) that were encapsulated within 1-2 layered N-doped graphene were fabricated on N-doped carbon sheets (CS) in Ru@G-CS-700 (pyrolysis at 700 °C). And the Ru@G-CS-700 composite was highly active and stable for hydrogenation of unstable components in bio-oil (31 samples including phenols, furfurals and aromatics) even in aqueous media under mild conditions. This work provides a new protocol to the utilization of biomass, especially for the upgrading of bio-oil.
Ruthenium Nanoparticles Stabilized in Cross-Linked Dendrimer Matrices: Hydrogenation of Phenols in Aqueous Media
Maximov, Anton,Zolotukhina, Anna,Murzin, Vadim,Karakhanov, Edward,Rosenberg, Edward
, p. 1197 - 1210 (2015/04/14)
Novel catalysts consisting of ruthenium nanoparticles encapsulated in cross-linked matrices based on the poly(propylene imine) dendrimers of the 1st and 3rd generations have been synthesized with a narrow particle size distribution (3.8 and 1.0 nm, respectively). The resulting materials showed high activity for the hydrogenation of phenols in aqueous media (specific catalytic activity reached turnover frequencies of 2975h-1 with respect to hydrogen uptake). It has been shown that the use of water as a solvent leads to a 1.5 to 50-fold increase in the reaction rate depending upon the nature of the substrate. It has been established that unlike the traditional heterogeneous catalysts based on ruthenium, during the hydrogenation of dihydroxybenzenes, the hydrogenation rate decreases in the order: resorcinol>hydroquinoneacatechol. The maximum specific activity for resorcinol was a turnover frequency of 243150h-1 with respect to hydrogen uptake. The catalyst based on the dendrimer of the 3rd generation containing finer particles has significantly inferior activity to the catalyst based on the dendrimer of the 1st generation by virtue of steric factors, as well as the need for prereduction of the ruthenium oxide contained on the surface. These catalysts showed resistance to metal leaching and may be reused several times without loss of activity.
Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks
Schutyser, Wouter,Van Den Bosch, Sander,Dijkmans, Jan,Turner, Stuart,Meledina, Maria,Van Tendeloo, Gustaaf,Debecker, Damien P.,Sels, Bert F.
, p. 1805 - 1818 (2015/06/02)
Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (>250°C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (≈80 %) and tin-containing beta zeolite to form 4-alkyl-ε-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2O2.