Welcome to LookChem.com Sign In|Join Free

CAS

  • or
2-AMINO-3-P-TOLYL-PROPIONIC ACID, also known as Amino Acid Tolmetin, is a chemical compound that functions as a non-steroidal anti-inflammatory drug (NSAID). It possesses analgesic and anti-inflammatory properties, which are attributed to its ability to inhibit the production of chemicals in the body that cause pain and inflammation. 2-AMINO-3-P-TOLYL-PROPIONIC ACID is recognized for its effectiveness in managing various conditions.

4599-47-7

Post Buying Request

4599-47-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4599-47-7 Usage

Uses

Used in Pharmaceutical Industry:
2-AMINO-3-P-TOLYL-PROPIONIC ACID is used as an analgesic and anti-inflammatory agent for the treatment of conditions such as rheumatoid arthritis, osteoarthritis, and menstrual pain. Its application is based on its capacity to alleviate pain and reduce inflammation, providing relief to patients suffering from these conditions.
It is crucial to use 2-AMINO-3-P-TOLYL-PROPIONIC ACID under medical supervision due to its potential side effects and the possibility of interactions with other medications. This ensures that the benefits of the compound are maximized while minimizing any risks associated with its use.

Check Digit Verification of cas no

The CAS Registry Mumber 4599-47-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,5,9 and 9 respectively; the second part has 2 digits, 4 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 4599-47:
(6*4)+(5*5)+(4*9)+(3*9)+(2*4)+(1*7)=127
127 % 10 = 7
So 4599-47-7 is a valid CAS Registry Number.
InChI:InChI=1/C10H13NO2/c1-7-2-4-8(5-3-7)6-9(11)10(12)13/h2-5,9H,6,11H2,1H3,(H,12,13)

4599-47-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Amino-3-p-tolyl-propionic acid

1.2 Other means of identification

Product number -
Other names 2-AMINO-3-P-TOLYL-PROPIONIC ACID

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4599-47-7 SDS

4599-47-7Relevant articles and documents

A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids

Varga, Andrea,Csuka, Pál,Sonesouphap, Orlavanah,Bánóczi, Gergely,To?a, Monica Ioana,Katona, Gabriel,Molnár, Zsófia,Bencze, László Csaba,Poppe, László,Paizs, Csaba

, p. 185 - 194 (2020/04/28)

A novel phenylalanine ammonia-lyase of the psychrophilic yeast Pseudozyma antarctica (PzaPAL) was identified by screening microbial genomes against known PAL sequences. PzaPAL has a significantly different substrate binding pocket with an extended loop (26 aa long) connected to the aromatic ring binding region of the active site as compared to the known PALs from eukaryotes. The general properties of recombinant PzaPAL expressed in E. coli were characterized including kinetic features of this novel PAL with L-phenylalanine (S)-1a and further racemic substituted phenylalanines rac-1b-g,k. In most cases, PzaPAL revealed significantly higher turnover numbers than the PAL from Petroselinum crispum (PcPAL). Finally, the biocatalytic performance of PzaPAL and PcPAL was compared in the kinetic resolutions of racemic phenylalanine derivatives (rac-1a-s) by enzymatic ammonia elimination and also in the enantiotope selective ammonia addition reactions to cinnamic acid derivatives (2a-s). The enantiotope selectivity of PzaPAL with o-, m-, p-fluoro-, o-, p-chloro- and o-, m-bromo-substituted cinnamic acids proved to be higher than that of PcPAL.

Bi-enzymatic Conversion of Cinnamic Acids to 2-Arylethylamines

Weise, Nicholas J.,Thapa, Prasansa,Ahmed, Syed T.,Heath, Rachel S.,Parmeggiani, Fabio,Turner, Nicholas J.,Flitsch, Sabine L.

, p. 995 - 998 (2020/01/21)

The conversion of carboxylic acids, such as acrylic acids, to amines is a transformation that remains challenging in synthetic organic chemistry. Despite the ubiquity of similar moieties in natural metabolic pathways, biocatalytic routes seem to have been overlooked for this purpose. Herein we present the conception and optimisation of a two-enzyme system, allowing the synthesis of β-phenylethylamine derivatives from readily-available ring-substituted cinnamic acids. After characterisation of both parts of the reaction in a two-step approach, a set of conditions allowing the one-pot biotransformation was optimised. This combination of a reversible deaminating and irreversible decarboxylating enzyme, both specific for the amino acid intermediate in tandem, represents a general method by which new strategies for the conversion of carboxylic acids to amines could be designed.

Organocatalytic Enantioselective Addition of α-Aminoalkyl Radicals to Isoquinolines

Liu, Xiangyuan,Liu, Yang,Chai, Guobi,Qiao, Baokun,Zhao, Xiaowei,Jiang, Zhiyong

supporting information, p. 6298 - 6301 (2018/10/09)

With a dual organocatalytic system involving a chiral phosphoric acid and a dicyanopyrazine-derived chromophore (DPZ) photosensitizer and under the irradiation with visible light, an enantioselective Minisci-type addition of α-amino acid-derived redox-active esters (RAEs) to isoquinolines has been developed. A variety of prochiral α-aminoalkyl radicals generated from RAEs were successfully introduced on isoquinolines, providing a range of valuable α-isoquinoline-substituted chiral secondary amines in high yields with good to excellent enantioselectivities.

Bio-inspired enantioselective full transamination using readily available cyclodextrin

Zhang, Shiqi,Li, Guangxun,Liu, Hongxin,Wang, Yingwei,Cao, Yuan,Zhao, Gang,Tang, Zhuo

, p. 4203 - 4208 (2017/02/05)

The mimics of vitamin B6-dependent enzymes that catalyzed an enantioselective full transamination in the pure aqueous phase have been realized for the first time through the establishment of a new “pyridoxal 5′-phosphate (PLP) catalyzed non-covalent cyclodextrin (CD)-keto acid inclusion complexes” system, and various optically active amino acids have been obtained.

Ligand-Enabled β-C–H Arylation of α-Amino Acids Without Installing Exogenous Directing Groups

Chen, Gang,Zhuang, Zhe,Li, Gen-Cheng,Saint-Denis, Tyler G.,Hsiao, Yi,Joe, Candice L.,Yu, Jin-Quan

, p. 1506 - 1509 (2017/02/05)

Herein we report acid-directed β-C(sp3)-H arylation of α-amino acids enabled by pyridine-type ligands. This reaction does not require the installation of an exogenous directing group, is scalable, and enables the preparation of Fmoc-protected unnatural amino acids in three steps. The pyridine-type ligands are crucial for the development of this new C(sp3)-H arylation.

Novel chiral open-chain pyridoxamine catalyst and synthesis method and application thereof

-

Paragraph 0175; 0176; 0177; 0178; 0193; 0194; 0195; 0196, (2017/01/19)

The invention relates to a novel chiral open-chain pyridoxamine catalyst and a synthesis method and application thereof. The structural general formula of the pyridoxamine catalyst is shown in the specification, wherein R1, R2, R3 and R4 are one of hydrogen, C1-24 alkyl, C1-24 alkyl containing substituent groups, substances shown in the specification and halogen, the substituent groups on C1-24 alkyl are a substance shown in the specification or a substance shown in the specification or a substance shown in the specification or O-Rw or S-Rw' or halogen, and Rx, Rx', Ry, Ry', Ry'', Rz, Rz', Rw and Rw' are one of hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, tertiary butyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, (1-phenyl)ethyl, 1-naphthyl, 2-naphthyl and halogen. Compared with the prior art, the pyridoxamine catalyst can achieve rapid and efficient synthesis of chiral amino acid, the preparation raw materials are easy to obtain, reaction conditions are mild, cost is low, and when the novel chiral open-chain pyridoxamine catalyst is used for a transamination reaction, the conditions are mild, and the reaction is stable.

A new type of chiral-pyridoxamines for catalytic asymmetric transamination of α-keto acids

Chen, Jianfeng,Zhao, Junyu,Gong, Xing,Xu, Dongfang,Zhao, Baoguo

supporting information, p. 4612 - 4615 (2016/09/23)

A new type of chiral pyridoxamines bearing an adjacent chiral stereocenter has been developed via multi-step synthesis. The pyridoxamines displayed catalytic activity in asymmetric transamination of α-keto acids to give a variety of optically active amino acids in 27–78% yields with 34–62% ee's under very mild conditions. This work provides a synthetic strategy to construct new chiral pyridoxamines using bromopyridine 7 as a key synthon and also represents an early example of the applications of chiral pyridoxamines in asymmetric catalysis.

One-Pot Synthesis of α-Amino Acids through Carboxylation of Ammonium Ylides with CO2 Followed by Alkyl Migration

Mita, Tsuyoshi,Sugawara, Masumi,Sato, Yoshihiro

, p. 5236 - 5243 (2016/07/06)

A simple, yet powerful protocol for α-amino acid synthesis using carbon dioxide (CO2) was developed. α-Amino silanes could undergo four successive reactions (formation of ammonium salt, carboxylation, esterification, and 2,3- or 1,2-Stevens rearrangement) in the presence of allylic or benzylic halides under a CO2 atmosphere (1 atm). It is noteworthy that carboxylation at the position adjacent to a nitrogen atom proceeded via an ammonium ylide intermediate under mild conditions.

The bacterial ammonia lyase EncP: A tunable biocatalyst for the synthesis of unnatural amino acids

Weise, Nicholas J.,Parmeggiani, Fabio,Ahmed, Syed T.,Turner, Nicholas J.

supporting information, p. 12977 - 12983 (2015/10/28)

Enzymes of the class I lyase-like family catalyze the asymmetric addition of ammonia to arylacrylates, yielding high value amino acids as products. Recent examples include the use of phenylalanine ammonia lyases (PALs), either alone or as a gateway to deracemization cascades (giving (S)- or (R)-α-phenylalanine derivatives, respectively), and also eukaryotic phenylalanine aminomutases (PAMs) for the synthesis of the (R)-β-products. Herein, we present the investigation of another family member, EncP from Streptomyces maritimus, thereby expanding the biocatalytic toolbox and enabling the production of the missing (S)-β-isomer. EncP was found to convert a range of arylacrylates to a mixture of (S)-α- and (S)-β-arylalanines, with regioselectivity correlating to the strength of electron-withdrawing/-donating groups on the ring of each substrate. The low regioselectivity of the wild-type enzyme was addressed via structure-based rational design to generate three variants with altered preference for either α- or β-products. By examining various biocatalyst/substrate combinations, it was demonstrated that the amination pattern of the reaction could be tuned to achieve selectivities between 99:1 and 1:99 for β:α-product ratios as desired.

Immunomodulatory peptides

-

, (2014/12/12)

The invention relates to peptides derivatized with a hydrophilic polymer which, in some embodiments, bind to human FcRn and inhibit binding of the Fc portion of an IgG to an FcRn, thereby modulating serum IgG levels. The disclosed compositions and methods may be used in some embodiments, for example, in treating autoimmune diseases and inflammatory disorders. The invention also relates, in further embodiments, to methods of using and methods of making the peptides of the invention.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4599-47-7