464-07-3Relevant articles and documents
Biomimetic ketone reduction by disulfide radical anion
Barata-Vallejo, Sebastian,Bobrowski, Krzysztof,Chatgilialoglu, Chryssostomos,Ferreri, Carla,Marciniak, Bronislaw,Skotnicki, Konrad
, (2021/09/13)
The conversion of ribonucleosides to 2′-deoxyribonucleosides is catalyzed by ribonucleoside reductase enzymes in nature. One of the key steps in this complex radical mechanism is the reduction of the 3′-ketodeoxynucleotide by a pair of cysteine residues, providing the electrons via a disulfide radical anion (RSSR??) in the active site of the enzyme. In the present study, the bioinspired conversion of ketones to corresponding alcohols was achieved by the intermediacy of disulfide radical anion of cysteine (CysSSCys)?? in water. High concentration of cysteine and pH 10.6 are necessary for high-yielding reactions. The photoinitiated radical chain reaction includes the one-electron reduction of carbonyl moiety by disulfide radical anion, protonation of the resulting ketyl radical anion by water, and H-atom abstraction from CysSH. The (CysSSCys)?? transient species generated by ionizing radiation in aqueous solutions allowed the measurement of kinetic data with ketones by pulse radiolysis. By measuring the rate of the decay of (CysSSCys)?? at λmax = 420 nm at various concentrations of ketones, we found the rate constants of three cyclic ketones to be in the range of 104–105 M?1s?1 at ~22?C.
Highly Active Cooperative Lewis Acid—Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones
Titze, Marvin,Heitk?mper, Juliane,Junge, Thorsten,K?stner, Johannes,Peters, René
supporting information, p. 5544 - 5553 (2021/02/05)
Enantiopure secondary alcohols are fundamental high-value synthetic building blocks. One of the most attractive ways to get access to this compound class is the catalytic hydroboration. We describe a new concept for this reaction type that allowed for exceptional catalytic turnover numbers (up to 15 400), which were increased by around 1.5–3 orders of magnitude compared to the most active catalysts previously reported. In our concept an aprotic ammonium halide moiety cooperates with an oxophilic Lewis acid within the same catalyst molecule. Control experiments reveal that both catalytic centers are essential for the observed activity. Kinetic, spectroscopic and computational studies show that the hydride transfer is rate limiting and proceeds via a concerted mechanism, in which hydride at Boron is continuously displaced by iodide, reminiscent to an SN2 reaction. The catalyst, which is accessible in high yields in few steps, was found to be stable during catalysis, readily recyclable and could be reused 10 times still efficiently working.
1,3,4-Oxadiazole-functionalizedα-amino-phosphonates as ligands for the ruthenium-catalyzed reduction of ketones
Hkiri, Shaima,Gourlaouen, Christophe,Touil, Soufiane,Samarat, Ali,Sémeril, David
, p. 11327 - 11335 (2021/07/02)
Threeα-aminophosphonates, namely diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethylphenyl) methyl]phosphonate (3a), diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(2-methoxyphenyl)methyl]phosphonate (3b) and diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-nitrophenyl)methyl]phosphonate (3c), were synthetizedviathe Pudovik-type reaction between diethyl phosphite and imines, obtained from 5-phenyl-1,2,4-oxadiazol-2-amine and aromatic aldehydes, under microwave irradiation. Compounds3a-cunderwent complexation with a ruthenium(ii) precursor, selectively at the more basic nitrogen atom of the oxadiazole ring, leading to the corresponding ruthenium complexes4a-cof the formula [RuCl2(L)(p-cymene)] (L= α-aminophosphonates3a-c). Complexes4a-cproved to be efficient catalysts for the transfer hydrogenation of ketones to alcohols. All new compounds were fully characterised by elemental analysis, infrared, mass and NMR spectroscopy. An X-ray structure of the α-aminophosphonate3bwas obtained and revealed the presence, in the solid state, of an infinite chain of3bunits supramolecularly interlinked. Two X-ray diffraction studies carried out on ruthenium complexes confirm the specific coordination of the electron-enricher nitrogen atom of the oxadiazole ring.
Erbium-Catalyzed Regioselective Isomerization-Cobalt-Catalyzed Transfer Hydrogenation Sequence for the Synthesis of Anti-Markovnikov Alcohols from Epoxides under Mild Conditions
Liu, Xin,Longwitz, Lars,Spiegelberg, Brian,T?njes, Jan,Beweries, Torsten,Werner, Thomas
, p. 13659 - 13667 (2020/11/30)
Herein, we report an efficient isomerization-transfer hydrogenation reaction sequence based on a cobalt pincer catalyst (1 mol %), which allows the synthesis of a series of anti-Markovnikov alcohols from terminal and internal epoxides under mild reaction conditions (≤55 °C, 8 h) at low catalyst loading. The reaction proceeds by Lewis acid (3 mol % Er(OTf)3)-catalyzed epoxide isomerization and subsequent cobalt-catalyzed transfer hydrogenation using ammonia borane as the hydrogen source. The general applicability of this methodology is highlighted by the synthesis of 43 alcohols from epoxides. A variety of terminal (23 examples) and 1,2-disubstituted internal epoxides (14 examples) bearing different functional groups are converted to the desired anti-Markovnikov alcohols in excellent selectivity and yields of up to 98%. For selected examples, it is shown that the reaction can be performed on a preparative scale up to 50 mmol. Notably, the isomerization step proceeds via the most stable carbocation. Thus, the regiochemistry is controlled by stereoelectronic effects. As a result, in some cases, rearrangement of the carbon framework is observed when tri-and tetra-substituted epoxides (6 examples) are converted. A variety of functional groups are tolerated under the reaction conditions even though aldehydes and ketones are also reduced to the respective alcohols under the reaction conditions. Mechanistic studies and control experiments were used to investigate the role of the Lewis acid in the reaction. Besides acting as the catalyst for the epoxide isomerization, the Lewis acid was found to facilitate the dehydrogenation of the hydrogen donor, which enhances the rate of the transfer hydrogenation step. These experiments additionally indicate the direct transfer of hydrogen from the amine borane in the reduction step.
Ligand Effect in Alkali-Metal-Catalyzed Transfer Hydrogenation of Ketones
Alshakova, Iryna D.,Dudding, Travis,Foy, Hayden C.,Nikonov, Georgii I.
supporting information, (2019/08/21)
This work unveils the reactivity patterns, as well as ligand and additive effect on alkali-metal-base-catalyzed transfer hydrogenation of ketones. Crucially to this reactivity is the presence of a Lewis acid (alkali cation), as opposed to a simple base effect. With aryl ketones, the observed reactivity order is Na+>Li+>K+, whereas for aliphatic substrates it follows the expected Lewis acidity, Li+>Na+>K+. Importantly, the reactivity pattern can be drastically changed by adding ligands and additives. Kinetic, labelling, and competition experiments as well as DFT calculations suggested that the reaction proceeds through a concerted direct hydride-transfer mechanism, originally suggested by Woodward. The lithium cation was found to be intrinsically more active than heavier congeners, but in the case of aryl ketones a decrease in reaction rate was observed at ≈40 percent conversion with lithium cations. Noncovalent-interaction analysis revealed that this deceleration effect originated from specific noncovalent interactions between the aryl moiety of 1-phenylethanol and the carbonyl group of acetophenone, which stabilize the product in the coordination sphere of lithium and thus poison the catalyst. The ligand/additive effect is a complicated phenomenon that includes a combination of several factors, such as the decrease of activation energy by ligation (confirmed by distortion/interaction calculations of N,N,N’,N’-tetramethylethylenediamine, TMEDA) and the change in relative stabilization of reagents and substrates in the solution and the coordination sphere of the metal. Finally, we observed that lithium-base-catalyzed transfer hydrogenation can be further facilitated by the addition of an inexpensive and benign reagent, LiCl, which likely operates by re-initiating the reaction on a new lithium center.
Flat and Efficient H CNN and CNN Pincer Ruthenium Catalysts for Carbonyl Compound Reduction
Giboulot, Steven,Baldino, Salvatore,Ballico, Maurizio,Figliolia, Rosario,P?thig, Alexander,Zhang, Shuanming,Zuccaccia, Daniele,Baratta, Walter
, p. 1127 - 1142 (2019/03/14)
The bidentate HCNN dicarbonyl ruthenium complexes trans,cis-[RuCl2(HCNN)(CO)2] (1-3) and trans,cis-[RuCl2(ampy)(CO)2] (1a) were prepared by reaction of [RuCl2(CO)2]n with 1-[6-(4′-methylphenyl)pyridin-2-yl]methanamine, benzo[h]quinoline (HCNN), and 2-(aminomethyl)pyridine (ampy) ligands. Alternatively, the derivatives 1-3 were obtained from the reaction of RuCl3 hydrate with HCO2H and HCNN. The pincer CNN cis-[RuCl(CNN)(CO)2] (4) was isolated from 1 by reaction with NEt3. The monocarbonyl complexes trans-[RuCl2(HCNN)(PPh3)(CO)] (5-7) were synthesized from [RuCl2(dmf)(PPh3)2(CO)] and HCNN ligands, while the diacetate trans-[Ru(OAc)2(HCNN)(PPh3)(CO)] (8) was obtained from [Ru(OAc)2(PPh3)2(CO)]. Carbonylation of cis-[RuCl(CNN)(PPh3)2] with CO afforded the pincer derivatives [RuCl(CNN)(PPh3)(CO)] (9-11). Treatment of 9 with Na[BArf]4 and PPh3 gave the cationic complex trans-[Ru(CNN)(PPh3)2(CO)][BArf4] (12). The dicarbonyl derivatives 1-4, in the presence of PPh3 or PCy3, and the monocarbonyl complexes 5-12 catalyzed the transfer hydrogenation (TH) of acetophenone (a) in 2-propanol at reflux (S/C = 1000-100000 and TOF up to 100000 h-1). Compounds 1-3, with PCy3, and 6 and 8-10 were proven to catalyze the TH of carbonyl compounds, including α,β-unsaturated aldehydes and bulky ketones (S/C and TOF up to 10000 and 100000 h-1, respectively). The derivatives 1-3 with PCy3 and 5 and 6 catalyzed the hydrogenation (HY) of a (H2, 30 bar) at 70 °C (S/C = 2000-10000). Complex 5 was active in the HY of diaryl ketones and aryl methyl ketones, leading to complete conversion at S/C = 10000.
Hydrosilylation of carbonyl and carboxyl groups catalysed by Mn(i) complexes bearing triazole ligands
Martínez-Ferraté, Oriol,Chatterjee, Basujit,Werlé, Christophe,Leitner, Walter
, p. 6370 - 6378 (2019/11/20)
Manganese(i) complexes bearing triazole ligands are reported as catalysts for the hydrosilylation of carbonyl and carboxyl compounds. The desired reaction proceeds readily at 80 °C within 3 hours at catalyst loadings as low as 0.25 to 1 mol%. Hence, good to excellent yields of alcohols could be obtained for a wide range of substrates including ketones, esters, and carboxylic acids illustrating the versatility of the metal/ligand combination.
Magnesium Exchanged Zirconium Metal-Organic Frameworks with Improved Detoxification Properties of Nerve Agents
Gil-San-Millan, Rodrigo,López-Maya, Elena,Platero-Prats, Ana E.,Torres-Pérez, Virginia,Delgado, Pedro,Augustyniak, Adam W.,Kim, Min Kun,Lee, Hae Wan,Ryu, Sam Gon,Navarro, Jorge A. R.
supporting information, p. 11801 - 11805 (2019/08/28)
UiO-66, MOF-808 and NU-1000 metal-organic frameworks exhibit a differentiated reactivity toward [Mg(OMe)2(MeOH)2]4 related to their pore accessibility. Microporous UiO-66 remains unchanged while mesoporous MOF-808 and hierarchical micro/mesoporous NU-1000 materials yield doped systems containing exposed MgZr5O2(OH)6 clusters in the mesoporous cavities. This modification is responsible for a remarkable enhancement of the catalytic activity toward the hydrolytic degradation of P-F and P-S bonds of toxic nerve agents, at room temperature, in unbuffered aqueous solutions.
“Inverse” Frustrated Lewis Pairs: An Inverse FLP Approach to the Catalytic Metal Free Hydrogenation of Ketones
Mummadi, Suresh,Brar, Amandeep,Wang, Guoqiang,Kenefake, Dustin,Diaz, Rony,Unruh, Daniel K.,Li, Shuhua,Krempner, Clemens
supporting information, p. 16526 - 16531 (2018/10/20)
For the first time have boron-containing weak Lewis acids been demonstrated to be active components of Frustrated Lewis Pair (FLP) catalysts in the hydrogenation of ketones to alcohols. Combining the organosuperbase (pyrr)3P=NtBu with the Lewis acid 9-(4-CF3-C6H4)-BBN generated an “inverse” FLP catalyst capable of hydrogenating a range of aliphatic and aromatic ketones including N-, O- and S-functionalized substrates and bio-mass derived ethyl levulinate. Initial computational and experimental studies indicate the mechanism of catalytic hydrogenation with “inverse” FLPs to be different from conventional FLP catalysts that contain strong Lewis acids such as B(C6F5)3.
FLP-Catalyzed Transfer Hydrogenation of Silyl Enol Ethers
Khan, Imtiaz,Reed-Berendt, Benjamin G.,Melen, Rebecca L.,Morrill, Louis C.
, p. 12356 - 12359 (2018/09/18)
Herein we report the first catalytic transfer hydrogenation of silyl enol ethers. This metal free approach employs tris(pentafluorophenyl)borane and 2,2,6,6-tetramethylpiperidine (TMP) as a commercially available FLP catalyst system and naturally occurring γ-terpinene as a dihydrogen surrogate. A variety of silyl enol ethers undergo efficient hydrogenation, with the reduced products isolated in excellent yields (29 examples, 82 % average yield).