Welcome to LookChem.com Sign In|Join Free

CAS

  • or

480-90-0

Post Buying Request

480-90-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

480-90-0 Usage

Synthesis Reference(s)

Canadian Journal of Chemistry, 72, p. 1656, 1994 DOI: 10.1139/v94-208Journal of the American Chemical Society, 102, p. 3538, 1980 DOI: 10.1021/ja00530a039

Check Digit Verification of cas no

The CAS Registry Mumber 480-90-0 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,8 and 0 respectively; the second part has 2 digits, 9 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 480-90:
(5*4)+(4*8)+(3*0)+(2*9)+(1*0)=70
70 % 10 = 0
So 480-90-0 is a valid CAS Registry Number.
InChI:InChI=1/C9H6O/c10-9-6-5-7-3-1-2-4-8(7)9/h1-6H

480-90-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name inden-1-one

1.2 Other means of identification

Product number -
Other names benzocyclopentadienone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:480-90-0 SDS

480-90-0Relevant articles and documents

A new and efficient synthesis of indenone

Zengin,Dastan,Balci

, p. 1993 - 1999 (2001)

Reaction of dichloroketone 2 with NEt3 gave indenone (4) in high yield. Catodic reaction of 2 in the presence of C/Pt electrodes afforded the rearranged product 3 in high yield besides a small amount of chlorohydroxyketone 5. Reaction of rearranged dichloroketone 3 with NEt3 provided indenone (4) as the sole product. The mechanism of these reaction was discussed.

Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels

Maier,Follmann,Hessler,Kleemann,Hachtel,Fuchs,Weissmann,Linz,Schmidt,L?hn,Schroeter,Wang,Rütten,Strübing

, p. 3650 - 3660 (2015)

Background and Purpose The cation channel transient receptor potential canonical (TRPC) 6 has been associated with several pathologies including focal segmental glomerulosclerosis, pulmonary hypertension and ischaemia reperfusion-induced lung oedema. We set out to discover novel inhibitors of TRPC6 channels and investigate the therapeutic potential of these agents. Experimental Approach A library of potential TRPC channel inhibitors was designed and synthesized. Activity of the compounds was assessed by measuring intracellular Ca2+ levels. The lead compound SAR7334 was further characterized by whole-cell patch-clamp techniques. The effects of SAR7334 on acute hypoxic pulmonary vasoconstriction (HPV) and systemic BP were investigated. Key Results SAR7334 inhibited TRPC6, TRPC3 and TRPC7-mediated Ca2+ influx into cells with IC50s of 9.5, 282 and 226 nM, whereas TRPC4 and TRPC5-mediated Ca2+ entry was not affected. Patch-clamp experiments confirmed that the compound blocked TRPC6 currents with an IC50 of 7.9 nM. Furthermore, SAR7334 suppressed TRPC6-dependent acute HPV in isolated perfused lungs from mice. Pharmacokinetic studies of SAR7334 demonstrated that the compound was suitable for chronic oral administration. In an initial short-term study, SAR7334 did not change mean arterial pressure in spontaneously hypertensive rats (SHR). Conclusions and Implications Our results confirm the role of TRPC6 channels in hypoxic pulmonary vasoregulation and indicate that these channels are unlikely to play a major role in BP regulation in SHR. SAR7334 is a novel, highly potent and bioavailable inhibitor of TRPC6 channels that opens new opportunities for the investigation of TRPC channel function in vivo.

Mild Darzens Annulations for the Assembly of Trifluoromethylthiolated (SCF3) Aziridine and Cyclopropane Structures

Delost, Michael D.,Njardarson, Jon T.

supporting information, p. 6121 - 6125 (2021/08/16)

We report mild new annulation approaches to trisubstituted trifluoromethylthiolated (SCF3) aziridines and cyclopropanes via Darzens inspired protocols. The products of these anionic annulations, rarely studied previously, possess attractive features rendering them valuable building blocks for synthesis platforms. In this study, trisubstituted acetophenone nucleophiles bearing SCF3 and bromine substituents in their α position were shown to undergo [2 + 1] annulations with vinyl ketones and tosyl-protected imines under mild reaction conditions.

Anchoring of a terpyridine-based Mo(VI) complex on manganese ferrite as a recoverable catalyst for epoxidation of olefins under solvent-free conditions

Fadaei Sarabi, Mahsa,Bezaatpour, Abolfazl,Mahmoudi, Ali

, p. 1597 - 1612 (2021/03/29)

A magnetically separable heterogeneous nanocatalyst was obtained by anchoring a terpyridine-based Mo(VI) complex on modified MnFe2O4 nanoparticles and characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and diffuse reflectance spectroscopies (DRS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis. The catalytic activity of the supported molybdenum based catalyst was evaluated in the selective epoxidation of various olefins (cyclooctene, limonene, 1-dodecane, 1-heptene, styrene, 1-indene, α-pinene, cyclohexene) with tert-butyl hydroperoxide (TBHP) as an oxidant under solvent-free conditions. This nanocatalyst was easily separated by using an external magnetic field and reused consecutively at least five times with no significant loss in selectivity and catalytic activity. The short reaction time, simple preparation, high conversion, good physicochemical stability and magnetic recycling of the catalysts are beneficial.

Design, synthesis, and biological evaluation of novel sulindac derivatives as partial agonists of PPARγ with potential anti-diabetic efficacy

Huang, Fengyu,Zeng, Zhiping,Zhang, Weidong,Yan, Zhiqiang,Chen, Jiayun,Yu, Liangfa,Yang, Qian,Li, Yihuan,Yu, Hongyu,Chen, Junjie,Wu, Caisheng,Zhang, Xiao-kun,Su, Ying,Zhou, Hu

, (2021/06/22)

Peroxisome proliferator-activated receptor gamma (PPARγ) is a valuable drug target for diabetic treatment and ligands of PPARγ have shown potent anti-diabetic efficacy. However, to overcome the severe side effects of current PPARγ-targeted drugs, novel PPARγ ligands need to be developed. Sulindac, an identified ligand of PPARγ, is widely used in clinic as a non-steroidal anti-inflammatory drug. To explore its potential application for diabetes, we designed and synthesized a series of sulindac derivatives to investigate their structure-activity relationship as PPARγ ligand and potential anti-diabetic effect. We found that meta-substitution in sulindac's benzylidene moiety was beneficial to PPARγ binding and transactivation. Z rather than E configuration of the benzylidene double bond endowed derivatives with the selectivity of PPARγ activation. The indene fluorine is essential for binding and regulating PPARγ. Compared with rosiglitazone, compound 6b with benzyloxyl meta-substitution and Z benzylidene double bond weakly induced adipogenesis and PPARγ-targeted gene expression. However, 6b potently improved glucose tolerance in a diabetic mice model. Unlike rosiglitazone, 6b was devoid of apparent toxicity to osteoblastic formation. Thus, we provided some useful guidelines for PPARγ-based optimization of sulindac and an anti-diabetic lead compound with less side effects.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 480-90-0