Welcome to LookChem.com Sign In|Join Free

CAS

  • or
4-Propylcyclohexanol is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

52204-65-6

Post Buying Request

52204-65-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

52204-65-6 Usage

Chemical Properties

Colorless transparent liquid

Check Digit Verification of cas no

The CAS Registry Mumber 52204-65-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,2,2,0 and 4 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 52204-65:
(7*5)+(6*2)+(5*2)+(4*0)+(3*4)+(2*6)+(1*5)=86
86 % 10 = 6
So 52204-65-6 is a valid CAS Registry Number.
InChI:InChI=1/C9H18O/c1-2-3-8-4-6-9(10)7-5-8/h8-10H,2-7H2,1H3

52204-65-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-Propylcyclohexanol

1.2 Other means of identification

Product number -
Other names 4-N-PROPYLCYCLOHEXANOL (CIS/TRANS MIXTURE)

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:52204-65-6 SDS

52204-65-6Relevant articles and documents

INHIBITORS OF NOROVIRUS AND CORONAVIRUS REPLICATION

-

Paragraph 00994-00996, (2021/10/15)

Compounds of Formula (I) and methods of inhibiting the replication of viruses in a biological sample or patient, of reducing the amount of viruses in a biological sample or patient, and of treating a virus infection in a patient, comprising administering to said biological sample or patient an effective amount of a compound represented by Formula (I), a compound of Table A or B or a pharmaceutically acceptable salt thereof.

Aromatic compound hydrogenation and hydrodeoxygenation method and application thereof

-

Paragraph 0094-0095; 0123-0125; 0127-0130, (2021/05/29)

The invention belongs to the technical field of medicines, and discloses an aromatic compound hydrogenation and hydrodeoxygenation method under mild conditions and application of the method in hydrogenation and hydrodeoxygenation reactions of the aromatic compounds and related mixtures. Specifically, the method comprises the following steps: contacting the aromatic compound or a mixture containing the aromatic compound with a catalyst and hydrogen with proper pressure in a solvent under a proper temperature condition, and reacting the hydrogen, the solvent and the aromatic compound under the action of the catalyst to obtain a corresponding hydrogenation product or/and a hydrodeoxygenation product without an oxygen-containing substituent group. The invention also discloses specific implementation conditions of the method and an aromatic compound structure type applicable to the method. The hydrogenation and hydrodeoxygenation reaction method used in the invention has the advantages of mild reaction conditions, high hydrodeoxygenation efficiency, wide substrate applicability, convenient post-treatment, and good laboratory and industrial application prospects.

One-pot hydrodeoxygenation (HDO) of lignin monomers to C9 hydrocarbons co-catalysed by Ru/C and Nb2O5

Abu-Omar, Mahdi M.,Ford, Peter C.,Li, Simin,Liu, Baoyuan,Luo, Zhongyang,Truong, Julianne

supporting information, p. 7406 - 7416 (2020/11/25)

A physical mixture of Ru/C and Nb2O5 is an effective catalyst for upgrading lignin monomers under low H2 pressure at 250 °C to a clean cut of hydrocarbon liquid fuels. The reaction solvent is water with a small amount of methanol additive. Hydrodeoxygenation (HDO) was evaluated using dihydroeugenol (DHE) as an exemplary lignin monomer model. Under optimized conditions, 100% conversion of DHE and very high selectivity to propyl cyclohexane (C9 hydrocarbon) was achieved. Nb2O5 was prepared at a low temperature (450 °C) and was shown to contain acid sites that enhance the production of fully deoxygenated products. The methanol additive serves as a hydrogen source for the Ru/C catalysed reduction of the aromatic ring. In addition, when a substrate mixture of DHE, isoeugenol and 4-allylsyringol simulating lignin products was employed, 100% conversion to propyl cyclohexane (76%) and propyl benzene (24%) was observed, thereby suggesting the general applicability of this catalyst system for funneling lignin monomers into a clean cut of hydrocarbon liquid fuels. This study sheds light on the function of each catalyst component and provides a simple and green utilization of biomass monomers as a feedstock for renewable hydrocarbon fuels. This journal is

Highly Efficient Cleavage of Ether Bonds in Lignin Models by Transfer Hydrogenolysis over Dual-Functional Ruthenium/Montmorillonite

Xue, Zhimin,Yu, Haitao,He, Jing,Zhang, Yibin,Lan, Xue,Liu, Rundong,Zhang, Luyao,Mu, Tiancheng

, p. 4579 - 4586 (2020/06/21)

Cleavage of ether bonds is a crucial but challenging step for lignin valorization. To efficiently realize this transformation, the development of robust catalysts or catalytic systems is required. In this study, montmorillonite (MMT)-supported Ru (denoted as Ru/MMT) is fabricated as a dual-functional heterogeneous catalyst to cleave various types of ether bonds through transfer hydrogenolysis without using any additional acids or bases. The prepared Ru/MMT material is found to efficiently catalyze the cleavage of various lignin models and lignin-derived phenols; cyclohexanes (fuels) and cyclohexanols (key intermediates) are the main products. The synergistic effect between electron-enriched Ru and the acidic sites on MMT contributes to the excellent performance of Ru/MMT. Systematic studies reveal that the reaction proceeds through two possible reaction pathways, including the direct cleavage of ether bonds and the formation of intermediates with one hydrogenated benzene ring, for all examined types of ether bonds, namely, 4-O-5, α-O-4, and β-O-4.

Selective hydrogenation of lignin-derived compounds under mild conditions

Chen, Lu,Van Muyden, Antoine P.,Cui, Xinjiang,Laurenczy, Gabor,Dyson, Paul J.

, p. 3069 - 3073 (2020/06/17)

A key challenge in the production of lignin-derived chemicals is to reduce the energy intensive processes used in their production. Here, we show that well-defined Rh nanoparticles dispersed in sub-micrometer size carbon hollow spheres, are able to hydrogenate lignin derived products under mild conditions (30 °C, 5 bar H2), in water. The optimum catalyst exhibits excellent selectivity and activity in the conversion of phenol to cyclohexanol and other related substrates including aryl ethers.

Liquid-phase Hydrodeoxygenation of 4-Propylphenol to Propylbenzene: Reducible Supports for Pt Catalysts

González Escobedo, José Luis,Karinen, Reetta,Lahtinen, Jouko,Lassi, Ulla,Lindblad, Marina,M?kel?, Eveliina,Neuvonen, Jouni,Puurunen, Riikka L.

, (2020/07/06)

Pyrolysis and liquefaction biocrudes obtained from lignocellulose are rich in phenolic compounds that can be converted to renewable aromatics. In this study, Pt catalysts on reducible metal oxide supports (Nb2O5, TiO2), along with irreducible ZrO2 as a reference, were investigated in the liquid-phase hydrodeoxygenation (HDO) of 4-propylphenol (350 °C, 20 bar H2, organic solvent). The most active catalyst was Pt/Nb2O5, which led to the molar propylbenzene selectivity of 77 percent, and a yield of 75 percent (98 percent conversion). Reducible metal oxide supports provided an increased activity and selectivity to the aromatic product compared to ZrO2, and the obtained results are among the best reported in liquid-phase. The reusability of the spent catalysts was also studied. The spent Pt/Nb2O5 catalyst provided the lowest conversion, while the product distribution of the spent Pt/ZrO2 catalyst changed towards oxygenates. The results highlight the potential of pyrolysis or liquefaction biocrudes as a source of aromatic chemicals.

Fine-Bubble-Slug-Flow Hydrogenation of Multiple Bonds and Phenols

Iio, Takuya,Nagai, Kohei,Kozuka, Tomoki,Sammi, Akhtar Mst,Sato, Kohei,Narumi, Tetsuo,Mase, Nobuyuki

supporting information, p. 1919 - 1924 (2020/11/09)

We describe a promising method for the continuous hydrogenation of alkenes or alkynes by using a newly developed fine-bubble generator. The fine-bubble-containing slug-flow system was up to 1.4 times more efficient than a conventional slug-flow method. When applied in the hydrogenation of phenols to the corresponding cyclohexanones, the fine bubble-slug-flow method suppressed over-reduction. As this method does not require the use of excess gas, it is expected to be widely applicable in improving the efficiency of gas-mediated flow reactions.

Low-Temperature Catalytic Hydrogenolysis of Guaiacol to Phenol over Al-Doped SBA-15 Supported Ni Catalysts

Wang, Qiuyue,Chen, Yufang,Yang, Guanheng,Deng, Ping,Lu, Xinqing,Ma, Rui,Fu, Yanghe,Zhu, Weidong

, p. 4930 - 4938 (2020/08/26)

Selective hydrogenolysis of aromatic carbon-oxygen (Caryl?O) bonds is a key strategy for the generation of aromatic chemicals from lignin. However, this process is usually operated at high temperatures and pressures over hydrogenation catalysts, resulting in a low selectivity for aromatics and an extra consumption of hydrogen. Here, a series of Al-doped SBA-15 mesoporous materials with different Si/Al molar ratios (Al-SBA-15) were prepared via a post-synthesis method using NaAlO2 as the Al source, and then Al-SBA-15 supported Ni catalysts (Ni/Al-SBA-15) were prepared by a deposition-precipitation method using urea as the hydrolysis reagent. The prepared supports and catalysts were extensively characterized using various techniques such as XRD, N2 adsorption/desorption, TEM, 27Al NMR, NH3-TPD, XPS, H2-TPR, and pyridine-FT-IR, and the catalysts were evaluated in the hydrogenolysis of the Caryl?O bond in guaiacol and lignin derived compounds under mild conditions. The effects of the Si/Al ratio in catalyst and reaction parameters on guaiacol conversion and product distribution were investigated in detail, associated with solvent effect. The incorporation of Al into the framework of SBA-15 can improve the Lewis acidity and the dispersion of the supported Ni particles and yet modulate the metal-support interactions, which are propitious to the hydrogenolysis of the Caryl?O bond in guaiacol. The catalyst Ni/Al-SBA-15 with a Si/Al molar ratio of 10 shows the best performance with a guaiacol conversion of 87.4 % and a phenol selectivity of 76.9 % under the mild conditions conducted, because of its proper acidity, suitable metal-support interactions, and high dispersion of the active species. The present study would stimulate research and development in multi-functional catalysts for the generation of valuable chemicals from biomass.

CALCIUM SALTS-SUPPORTED METAL CATALYST, METHOD FOR PREPARING THE SAME, AND METHOD FOR HYDRODEOXYGENATION REACTION OF OXYGENATES USING THE SAME

-

Paragraph 0072; 0073, (2020/01/04)

Disclosed herein are a calcium salts-supported metal catalyst, a method for preparing the same, and a method for the hydrodeoxygenation reaction of oxygenates using the same. The catalyst, in which a metal catalyst is supported on a carrier of a calcium salt, for example, calcium carbonate, has the effect of increasing the efficiency of hydrodeoxygenation reaction of oxygenates.

Surface Modification of a Supported Pt Catalyst Using Ionic Liquids for Selective Hydrodeoxygenation of Phenols into Arenes under Mild Conditions

Ohta, Hidetoshi,Tobayashi, Kanako,Kuroo, Akihiro,Nakatsuka, Mao,Kobayashi, Hirokazu,Fukuoka, Atsushi,Hamasaka, Go,Uozumi, Yasuhiro,Murayama, Haruno,Tokunaga, Makoto,Hayashi, Minoru

supporting information, p. 14762 - 14766 (2019/11/13)

The selective and efficient removal of oxygenated groups from lignin-derived phenols is a critical challenge to utilize lignin as a source for renewable aromatic chemicals. This report describes how surface modification of a zeolite-supported Pt catalyst using ionic liquids (ILs) remarkably increases selectivity for the hydrodeoxygenation (HDO) of phenols into arenes under mild reaction conditions using atmospheric pressure H2. Unmodified Pt/H-ZSM-5 converts phenols into aliphatic species as the major products along with a slight amount of arenes (10 % selectivity). In contrast, the catalyst modified with an IL, 1-butyl-3-methylimidazolium triflate, keeps up to 76 % selectivity for arenes even at a nearly complete conversion of phenols. The IL on the surface of Pt catalyst may offer the adsorption of phenols in an edge-to-face manner onto the surface, thus accelerating the HDO without the ring hydrogenation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 52204-65-6