526-75-0Relevant articles and documents
Active Site Dynamics of Xylene Hydroxylation by Cytochrome P-450 As Revealed by Kinetic Deuterium Isotope Effects
Hanzlik, Robert P.,Ling, Kah-Hiing John
, p. 9363 - 9370 (1993)
The cytochrome P-450 catalyzed hydroxylation of o- and p-xylene and five deuterated derivatives of each has been investigated using phenobarbital-induced rat liver microsomes.All possible monohydroxylation products were observed but benzylic hydroxylation predominated strongly (88-96percent).H/D discrimination was strongest when both isotopes were located on the same methyl gorup, less when they were located in different methyl groups on the same xylene molecule, and least when they were located in methyl groups on different molecules.Benzylic hydroxylation is subject to a large intrinsic (intramolecular) deuterium isotope effect (CH3/CD3=7.5-9.5), comprised of a large primary component (5.3-7.8) and a large normal α-secondary component (1.09-1.19).These isotope effects suggest a transition state for benzylic H-abstraction that is linear and symmetrical with substantial rehybridization toward planarity at the benzylic carbon and little residual C-H bond order remaining.In contrast aromatic hydroxylation of o- and p-xylene shows a small inverse α-secondary isotope effect (0.83-0.94).The D(V/K) isotope effect observed for benzylic hydroxylation in intermolecular competitions (ca. 1.9-2.3 for d0/d6 substrate mixtures) is substantially reduced by commitment to catalysis, with Cf=(kH+kr)k-1=3.6 for p-xylene and 5.9 for o-xylene.These results suggest a dynamic picture of catalysis with the following relative rates: methyl group rotation > substrate-orientation within the Michaelis complex (i.e. isotopically sensitive branching to different products) > product formation (i.e. commitment to catalysis) > substrate dissociation prior to hydroxylation.
(5,8)Picenophanedienes: Syntheses, Structural Analyses, Molecular Dynamics, and Reversible Intramolecular Structure Conversion
Tang, Min-Chih,Wei, Yu-Chen,Chu, Yen-Chen,Jiang, Cai-Xin,Huang, Zhi-Xuan,Wu, Chi-Chi,Chao, Tzu-Hsuan,Hong, Pei-Hsun,Cheng, Mu-Jeng,Chou, Pi-Tai,Wu, Yao-Ting
, p. 20351 - 20358 (2020)
This study presents an important and efficient synthetic approach to 5,8-dibromo-2,11-di-tert-butylpicene (3), with multigram scale, which was then converted to a new series of picenophanes (6-10). The tub-shaped [2,2](5,8)picenophanediene 8 with two cis-ethylene linkers was explored using X-ray crystallography. The tub-to-tub inversion proceed through the successive bending of the linkers and the barrier for isopropyl-substituted derivative 10 was experimentally estimated to be 18.7 kcal/mol. Picenophanes with a large π-system and semi-rigid structure exhibited anomalous photophysical properties. The ethano-bridged picenophane shows the weak exciton delocalization while the cis-ethylene-bridged picenophane exhibits dual emission rendered by the weakly delocalized exciton and excimer. With the aid of the ultrafast time-resolved emission spectroscopy, the mechanism of the excimer formation is resolved, showing a unique behavior of two-state reversible reaction with fast structural deformation whose lifetime is around 20 ps at 298 K. This work demonstrates that the slight difference in the bridge of tub-shaped picenophanes renders distinct photophysical behavior, revealing the potential of harnessing inter-moiety reaction in the picenophane systems.
Me3SI-promoted chemoselective deacetylation: a general and mild protocol
Gurawa, Aakanksha,Kashyap, Sudhir,Kumar, Manoj
, p. 19310 - 19315 (2021/06/03)
A Me3SI-mediated simple and efficient protocol for the chemoselective deprotection of acetyl groups has been developedviaemploying KMnO4as an additive. This chemoselective deacetylation is amenable to a wide range of substrates, tolerating diverse and sensitive functional groups in carbohydrates, amino acids, natural products, heterocycles, and general scaffolds. The protocol is attractive because it uses an environmentally benign reagent system to perform quantitative and clean transformations under ambient conditions.
REARRANGEMENT OF DIMETHYLPHENYLACYLATES USING ZEOLITES
-
Page/Page column 9-11, (2021/08/14)
The present invention relates to a Fries rearrangement of specific dimethylphenylacylates to form the desired respective hydroxyaryl ketones having two methyl groups bound to the aromatic ring. It has been found that the process is surprisingly very specific in view of the number and position of the methyl group(s) bound to the aromatic ring.
A mild and practical method for deprotection of aryl methyl/benzyl/allyl ethers with HPPh2andtBuOK
Pan, Wenjing,Li, Chenchen,Zhu, Haoyin,Li, Fangfang,Li, Tao,Zhao, Wanxiang
, p. 7633 - 7640 (2021/09/22)
A general method for the demethylation, debenzylation, and deallylation of aryl ethers using HPPh2andtBuOK is reported. The reaction features mild and metal-free reaction conditions, broad substrate scope, good functional group compatibility, and high chemical selectivity towards aryl ethers over aliphatic structures. Notably, this approach is competent to selectively deprotect the allyl or benzyl group, making it a general and practical method in organic synthesis.
Reaction of hydroxyl radical with arenes in solution—On the importance of benzylic hydrogen abstraction
Waggoner, Abygail R.,Abdulrahman, Yahya,Iverson, Alexis J.,Gibson, Ethan P.,Buckles, Mark A.,Poole, James S.
, (2021/08/27)
The regioselectivity of hydroxyl radical reactions with alkylarenes was investigated using a nuclear magnetic resonance (NMR)-based methodology capable of trapping and quantifying addition and hydrogen abstraction products of the initial elementary step of the oxidation process. Abstraction products are relatively minor components of the product mixtures (15–30 mol%), depending on the magnitude of the overall rate coefficient and the number of available hydrogens. The relative reactivity of addition at a given position on the ring depends on its relation to the methyl substituents on the hydrocarbons under study. The reactivity enhancements for disubstituted and trisubstituted rings are approximately additive under the conditions of this study.
A scalable and green one-minute synthesis of substituted phenols
Elumalai, Vijayaragavan,Hansen, J?rn H.
, p. 40582 - 40587 (2020/11/18)
A mild, green and highly efficient protocol was developed for the synthesis of substituted phenols via ipso-hydroxylation of arylboronic acids in ethanol. The method utilizes the combination of aqueous hydrogen peroxide as the oxidant and H2O2/HBr as the reagent under unprecedentedly simple and convenient conditions. A wide range of arylboronic acids were smoothly transformed into substituted phenols in very good to excellent yields without chromatographic purification. The reaction is scalable up to at least 5 grams at room temperature with one-minute reaction time and can be combined in a one-pot sequence with bromination and Pd-catalyzed cross-coupling to generate more diverse, highly substituted phenols.
Structural features and antioxidant activities of Chinese quince (Chaenomeles sinensis) fruits lignin during auto-catalyzed ethanol organosolv pretreatment
Cheng, Xi-Chuang,Guo, Xin-Ran,Liu, Hua-Min,Liu, Yu-Lan,Qin, Zhao,Wang, Xue-De
, p. 4348 - 4358 (2020/09/22)
Chinese quince fruits (Chaenomeles sinensis) have an abundance of lignins with antioxidant activities. To facilitate the utilization of Chinese quince fruits, lignin was isolated from it by auto-catalyzed ethanol organosolv pretreatment. The effects of three processing conditions (temperature, time, and ethanol concentration) on yield, structural features and antioxidant activities of the auto-catalyzed ethanol organosolv lignin samples were assessed individually. Results showed the pretreatment temperature was the most significant factor; it affected the molecular weight, S/G ratio, number of β-O-4′ linkages, thermal stability, and antioxidant activities of lignin samples. According to the GPC analyses, the molecular weight of lignin samples had a negative correlation with pretreatment temperature. 2D-HSQC NMR and Py-GC/MS results revealed that the S/G ratios of lignin samples increased with temperature, while total phenolic hydroxyl content of lignin samples decreased. The structural characterization clearly indicated that the various pretreatment conditions affected the structures of organosolv lignin, which further resulted in differences in the antioxidant activities of the lignin samples. These results can be helpful for controlling and optimizing delignification during auto-catalyzed ethanol organosolv pretreatment, and they provide theoretical support for the potential applications of Chinese quince fruits lignin as a natural antioxidant in the food industry.
Substrate substitution effects in the Fries rearrangement of aryl esters over zeolite catalysts
Bonrath, Werner,Létinois, Ulla,Lin, Ronghe,Medlock, Jonathan,Mitchell, Sharon,Netscher, Thomas,Pérez-Ramírez, Javier,Stemmler, René T.
, p. 4282 - 4292 (2020/07/30)
The catalytic transformation of aryl esters to hydroxyacetophenones via Fries rearrangement over solid acids is of interest to avoid the use of corrosive and toxic Lewis and Br?nsted acids traditionally applied. Microporous zeolites are known to catalyze the reaction of simple substrates such as phenyl acetate, but their application to substituted derivatives has received limited attention. To refine structure-activity relationships, here we examine the impact of various parameters including the solvent polarity, water content, acidic properties, and framework type on the reaction scheme in the Fries rearrangement of p-tolyl acetate over common solid acids. The results confirm the importance of providing a high concentration of accessible Br?nsted acid sites, with beta zeolites exhibiting the best performance. Extension of the substrate scope by substituting methyl groups in multiple positions identifies a framework-dependent effect on the rearrangement chemistry and highlights the potential for the transformation of dimethylphenyl acetates. Kinetic studies show that the major competitive path of cleavage of the ester C-O bond usually occurs in parallel to the Fries rearrangement. The possibility of sequentially acylating the resulting phenol depends on the substrate and reaction conditions.
Regioselectivity of Hydroxyl Radical Reactions with Arenes in Nonaqueous Solutions
Moores, Lee C.,Kaur, Devinder,Smith, Mathew D.,Poole, James S.
, p. 3260 - 3269 (2019/03/11)
The regioselectivity of hydroxyl radical addition to arenes was studied using a novel analytical method capable of trapping radicals formed after the first elementary step of reaction, without alteration of the product distributions by secondary oxidation processes. Product analyses of these reactions indicate a preference for o- over p-substitution for electron donating groups, with both favored over m-addition. The observed distributions are qualitatively similar to those observed for the addition of other carbon-centered radicals, although the magnitude of the regioselectivity observed is greater for hydroxyl. The data, reproduced by high accuracy CBS-QB3 computational methods, indicate that both polar and radical stabilization effects play a role in the observed regioselectivities. The application and potential limitations of the analytical method used are discussed.