Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Benzene, 1-methoxy-4-(phenylthio)-, also known as 4-(phenylthiomethyl)anisole or 1-methoxy-4-phenylthiobenzene, is an organic compound with the chemical formula C13H12OS. It is a colorless to pale yellow liquid with a molecular weight of 212.30 g/mol. Benzene,1-methoxy-4-(phenylthio)- is characterized by the presence of a benzene ring with a methoxy group at the 1-position and a phenylthio group at the 4-position. It is used as an intermediate in the synthesis of various pharmaceuticals, agrochemicals, and other organic compounds. Due to its chemical structure, it exhibits properties such as low solubility in water and high solubility in organic solvents. The compound is also known for its potential applications in the development of new materials and as a reagent in various chemical reactions.

5633-57-8 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 5633-57-8 Structure
  • Basic information

    1. Product Name: Benzene,1-methoxy-4-(phenylthio)-
    2. Synonyms: Benzene,1-methoxy-4-(phenylthio)-
    3. CAS NO:5633-57-8
    4. Molecular Formula: C13H12OS
    5. Molecular Weight: 216.3
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 5633-57-8.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: 350.7°Cat760mmHg
    3. Flash Point: 165.9°C
    4. Appearance: /
    5. Density: 1.15g/cm3
    6. Vapor Pressure: 8.73E-05mmHg at 25°C
    7. Refractive Index: 1.622
    8. Storage Temp.: N/A
    9. Solubility: N/A
    10. CAS DataBase Reference: Benzene,1-methoxy-4-(phenylthio)-(CAS DataBase Reference)
    11. NIST Chemistry Reference: Benzene,1-methoxy-4-(phenylthio)-(5633-57-8)
    12. EPA Substance Registry System: Benzene,1-methoxy-4-(phenylthio)-(5633-57-8)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 5633-57-8(Hazardous Substances Data)

5633-57-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 5633-57-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,6,3 and 3 respectively; the second part has 2 digits, 5 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 5633-57:
(6*5)+(5*6)+(4*3)+(3*3)+(2*5)+(1*7)=98
98 % 10 = 8
So 5633-57-8 is a valid CAS Registry Number.
InChI:InChI=1/C13H12OS/c1-14-11-7-9-13(10-8-11)15-12-5-3-2-4-6-12/h2-10H,1H3

5633-57-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-methoxy-4-phenylsulfanylbenzene

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5633-57-8 SDS

5633-57-8Relevant articles and documents

Evidence for a mono-electron transfer process in the BF3-promoted reaction of 4'-nitrobenzenesulphenanilide (NBSA)

Grossi,Montevecchi

, p. 5621 - 5624 (1991)

ESR spectroscopy shows the formation of a radical species in the BF3-promoted reaction of NBSA, an acid/base Lewis-type reaction.

Dimsyl Anion Enables Visible-Light-Promoted Charge Transfer in Cross-Coupling Reactions of Aryl Halides

Pan, Lei,Cooke, Maria Victoria,Spencer, Amara,Laulhé, Sébastien

, p. 420 - 425 (2021/11/01)

A methodology is reported for visible-light-promoted synthesis of unsymmetrical chalcogenides enabled by dimsyl anion in the absence of transition-metals or photoredox catalysts. The cross-coupling reaction between aryl halides and diaryl dichalcogenides proceeds with electron-rich, electron-poor, and heteroaromatic moieties. Mechanistic investigations using UV-Vis spectroscopy, time-dependent density functional theory (TD-DFT) calculations, and control reactions suggest that dimsyl anion forms an electron-donor-acceptor (EDA) complex capable of absorbing blue light, leading to a charge transfer responsible for generation of aryl radicals from aryl halides. This previously unreported mechanistic pathway may be applied to other light-induced transformations performed in DMSO in the presence of bases and aryl halides.

Environmentally Friendly and Recyclable CuCl 2-Mediated C-S Bond Coupling Strategy Using DMEDA as Ligand, Base, and Solvent

Shen, Guodong,Lu, Qichao,Wang, Zeyou,Sun, Weiwei,Zhang, Yalin,Huang, Xianqiang,Sun, Manman,Wang, Zhiming

supporting information, p. 184 - 198 (2021/09/20)

Simple reaction conditions and recyclable reagents are crucial for environmentally friendly industrial applications. An environment-friendly, recyclable and economic strategy was developed to synthesize diaryl chalcogenides by the CuCl2-catalyzed C S bondformation reaction via iodobenzenes and benzenethiols/1,2-diphenyldisulfanes using N,N'-dimethylethane-1,2-diamine (DMEDA) as ligand, base, and solvent. For these reactions, especially the reactions of diiodobenzenes and aminobenzenethiols/disulfanediyldianilines, a range of substrates are compatible and give the corresponding products in good to excellent yields. Both of the reagents in the catalytic system (CuCl2/DMEDA) are inexpensive, conveniently separable, and recyclable for more than five cycles.

Electrochemistry Enabled Nickel-Catalyzed Selective C?S Bond Coupling Reaction

Pan, Yi,Wang, Yang,Wang, Yi,Zhang, Feng

, (2022/02/16)

This work describes an electrochemical enabled nickel-catalyzed chemoselective C?S bond coupling protocol for the production of aryl sulfides and sulfones. By simply switching the nickel catalysts and electrodes, this electrochemical C?S bond coupling has demonstrated excellent redox activity, scalability and sustainability. Furthermore, the mechanism for this electrochemical cross-coupling reaction has been investigated.

Ni(II) Precatalysts Enable Thioetherification of (Hetero)Aryl Halides and Tosylates and Tandem C?S/C?N Couplings

Martín, M. Trinidad,Marín, Mario,Maya, Celia,Prieto, Auxiliadora,Nicasio, M. Carmen

supporting information, p. 12320 - 12326 (2021/08/09)

Ni-catalyzed C?S cross-coupling reactions have received less attention compared with other C-heteroatom couplings. Most reported examples comprise the thioetherification of most reactive aryl iodides with aromatic thiols. The use of C?O electrophiles in this context is almost uncharted. Here, we describe that preformed Ni(II) precatalysts of the type NiCl(allyl)(PMe2Ar’) (Ar’=terphenyl group) efficiently couple a wide range of (hetero)aryl halides, including challenging aryl chlorides, with a variety of aromatic and aliphatic thiols. Aryl and alkenyl tosylates are also well tolerated, demonstrating, for the first time, to be competent electrophilic partners in Ni-catalyzed C?S bond formation. The chemoselective functionalization of the C?I bond in the presence of a C?Cl bond allows for designing site-selective tandem C?S/C?N couplings. The formation of the two C-heteroatom bonds takes place in a single operation and represents a rare example of dual electrophile/nucleophile chemoselective process.

Aryl thioether compound and preparation method thereof

-

Paragraph 0014, (2021/11/27)

The invention discloses an aryl thioether compound and a synthesis method thereof, wherein an aryl carboxylic acid and a mercaptan (phenol) are used as main raw materials, and a nickel catalyst is prepared. Under the action of the phosphine ligand and the additive, the aryl carboxylic acid and the thiol (phenol) react in an organic solvent, and after the reaction is finished, the corresponding aryl thioether is obtained. The method has the advantages of low cost, high yield, simple and convenient operation, no pollution and the like, and has potential industrial application prospects. The method provides a cheap and green way for preparation of aryl thioether compounds.

Regioselective C-H Thioarylation of Electron-Rich Arenes by Iron(III) Triflimide Catalysis

Dodds, Amy C.,Sutherland, Andrew

, p. 5922 - 5932 (2021/05/04)

A mild and regioselective method for the preparation of unsymmetrical biaryl sulfides using iron(III) catalysis is described. Activation of N-(arylthio)succinimides using the powerful Lewis acid iron(III) triflimide allowed the efficient thiolation of a range of arenes, including anisoles, phenols, acetanilides, and N-heterocycles. The method was applicable for the late-stage thiolation of tyrosine and tryptophan derivatives and was used as the key step for the synthesis of pharmaceutically relevant biaryl sulfur-containing compounds such as the antibiotic dapsone and the antidepressant vortioxetine. Kinetic studies revealed that while N-(arylthio)succinimides bearing electron-deficient arenes underwent thioarylation catalyzed entirely by iron(III) triflimide, N-(arylthio)succinimides with electron-rich arenes displayed an autocatalytic mechanism promoted by the Lewis basic product.

Pd-Catalyzed Double-Decarbonylative Aryl Sulfide Synthesis through Aryl Exchange between Amides and Thioesters

Bie, Fusheng,Cao, Han,Liu, Chengwei,Liu, Xuejing,Shi, Yijun,Szostak, Michal,Zhou, Tongliang

, p. 8098 - 8103 (2021/10/25)

We report the palladium-catalyzed double-decarbonylative synthesis of aryl thioethers by an aryl exchange reaction between amides and thioesters. In this method, amides serve as aryl donors and thioesters are sulfide donors, enabling the synthesis of valuable aryl sulfides. The use of Pd/Xantphos without any additives has been identified as the catalytic system promoting the aryl exchange by C(O)-N/C(O)-S cleavages. The method is amenable to a wide variety of amides and sulfides.

Engaging Ag(0) single atoms in silver(I) salts-mediated C-B and C-S coupling under visible light irradiation

Cui, Enxin,Guo, Lirong,Li, Haibin,Qiao, Dan,Tung, Chen-Ho,Wang, Yifeng

, p. 255 - 263 (2021/09/06)

Silver(I) salts were found active in the borylation and sulfenylation of aryl iodides under visible light irradiation. The optimized borylation protocol using AgF did not need any additive, operated under very mild conditions, and well tolerated a broad scope of substrates and boron sources. Formation of Ag(0) single atoms (AgSAs) during the borylation reactions was examined using high-angle annular dark field aberration-corrected scanning transmission electron microscope (HAADF AC-STEM) and electron paramagnetic resonance (EPR). The activities of the silver(I) salts were affected by the anions and could be associated with their abilities in formation of AgSAs during the reactions. Kinetic studies showed that the deiodination rate was linearly correlated with the loading of AgSAs, and hence AgSAs were the true catalytic centers for the 1e?-reduction of the C-I moieties. The oxidation state of AgSAs kept 0 in both the resting and the working states. A “work-in-tandem” mechanism involving AgSAs as the catalytic centers and AgNPs as the light absorber to achieve the borylation of aryl iodides under visible light irradiation is proposed. The current approach not only provides an alternative system for borylation and sulfenylation of aryl iodides, but also reveals a new activity of silver(I) salts involving AgSAs under visible light irradiation.

Modulation of photochemical oxidation of thioethers to sulfoxides or sulfones using an aromatic ketone as the photocatalyst

Zhao, Bin,Hammond, Gerald B.,Xu, Bo

supporting information, (2021/09/13)

We have developed an eco-friendly and chemo-selective photocatalytic synthesis of sulfoxides or sulfones via oxidation of sulfides (thioethers) at ambient temperature using air or O2 as the oxidant. An inexpensive thioxanthone was used as the photocatalyst. Our method offers excellent chemical yields and good functional group tolerance. The hydrogen bonding between hexafluoro-2-propanol (HFIP) and sulfoxides may play an important role in minimizing the over-oxidization of sulfoxides.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5633-57-8