57213-48-6Relevant articles and documents
Reevaluating the Substrate Specificity of the L-Type Amino Acid Transporter (LAT1)
Chien, Huan-Chieh,Colas, Claire,Finke, Karissa,Springer, Seth,Stoner, Laura,Zur, Arik A.,Venteicher, Brooklynn,Campbell, Jerome,Hall, Colton,Flint, Andrew,Augustyn, Evan,Hernandez, Christopher,Heeren, Nathan,Hansen, Logan,Anthony, Abby,Bauer, Justine,Fotiadis, Dimitrios,Schlessinger, Avner,Giacomini, Kathleen M.,Thomas, Allen A.
supporting information, p. 7358 - 7373 (2018/08/06)
The L-type amino acid transporter 1 (LAT1, SLC7A5) transports essential amino acids across the blood-brain barrier (BBB) and into cancer cells. To utilize LAT1 for drug delivery, potent amino acid promoieties are desired, as prodrugs must compete with millimolar concentrations of endogenous amino acids. To better understand ligand-transporter interactions that could improve potency, we developed structural LAT1 models to guide the design of substituted analogues of phenylalanine and histidine. Furthermore, we evaluated the structure-activity relationship (SAR) for both enantiomers of naturally occurring LAT1 substrates. Analogues were tested in cis-inhibition and trans-stimulation cell assays to determine potency and uptake rate. Surprisingly, LAT1 can transport amino acid-like substrates with wide-ranging polarities including those containing ionizable substituents. Additionally, the rate of LAT1 transport was generally nonstereoselective even though enantiomers likely exhibit different binding modes. Our findings have broad implications to the development of new treatments for brain disorders and cancer.
METHOD FOR CLEANING 3-HYDROXYAMIDINOPHENYLALANINE DERIVATIVES BY THE PRECIPITATION AND RECRYSTALLISATION OF A SALT AND AN AROMATIC SULPHONIC ACID
-
Page/Page column 11-12, (2008/06/13)
The invention relates to a method for cleaning 3-hydroxyamidinophenylalanine derivatives comprising the steps: (a) addition of an aromatic sulphonic acid to a solution of an optionally contaminated 3-hydroxyamidinophenylalanine derivative in order to form a precipitate; (b) separation of the precipitate formed in step (a); and (c) recovery of the free 3-hydroxyamidinophenylalanine derivative from the precipitate. 3-hydroxyamidinophenylalanine derivatives can e.g. be used as urokinase inhibitors. The invention also relates to the use of highly pure 3-hydroxyamidinophenylalanine derivatives for producing 3-amidinophenylalanine derivatives.
HYDROXYAMIDINE AND HYDROXYGUANIDINE COMPOUNDS AS UROKINASE INHIBITORS
-
Page/Page column 12, (2008/06/13)
The invention relates to novel compounds for the inhibition of the urokinase plasminogen activator (uPA) with high bioavailability and which can also be administered orally, and to the use thereof as therapeutic active ingredients for the treatment of urokinase or/and urokinase receptor associated diseases, such as, for example, tumours and metastization. The invention especially relates to compounds (I) and (II) that contain hydroxyamidine or hydroxyguanidine groups, wherein E represents a group consisting of (a).