696-62-8Relevant articles and documents
Trialkylammonium salt degradation: Implications for methylation and cross-coupling
Assante, Michele,Baillie, Sharon E.,Juba, Vanessa,Leach, Andrew G.,McKinney, David,Reid, Marc,Washington, Jack B.,Yan, Chunhui
, p. 6949 - 6963 (2021/06/02)
Trialkylammonium (most notably N,N,N-trimethylanilinium) salts are known to display dual reactivity through both the aryl group and the N-methyl groups. These salts have thus been widely applied in cross-coupling, aryl etherification, fluorine radiolabelling, phase-transfer catalysis, supramolecular recognition, polymer design, and (more recently) methylation. However, their application as electrophilic methylating reagents remains somewhat underexplored, and an understanding of their arylation versus methylation reactivities is lacking. This study presents a mechanistic degradation analysis of N,N,N-trimethylanilinium salts and highlights the implications for synthetic applications of this important class of salts. Kinetic degradation studies, in both solid and solution phases, have delivered insights into the physical and chemical parameters affecting anilinium salt stability. 1H NMR kinetic analysis of salt degradation has evidenced thermal degradation to methyl iodide and the parent aniline, consistent with a closed-shell SN2-centred degradative pathway, and methyl iodide being the key reactive species in applied methylation procedures. Furthermore, the effect of halide and non-nucleophilic counterions on salt degradation has been investigated, along with deuterium isotope and solvent effects. New mechanistic insights have enabled the investigation of the use of trimethylanilinium salts in O-methylation and in improved cross-coupling strategies. Finally, detailed computational studies have helped highlight limitations in the current state-of-the-art of solvation modelling of reaction in which the bulk medium undergoes experimentally observable changes over the reaction timecourse. This journal is
Preparation method of nitrogen-alkyl (deuterated alkyl) aromatic heterocycle and alkyl (deuterated alkyl) aryl ether compound
-
Paragraph 0093-0098, (2021/04/03)
The invention provides a method for preparing nitrogen-alkyl(deuterated alkyl)aromatic heterocycle and alkyl(deuterated alkyl)aryl ether compounds. The method adopted in the invention specifically comprises the following steps: firstly, adding an alkoxy base (MOR') or a combination reagent Q (comprising a base M'X, an alcohol C and a molecular sieve E) into a solvent B to be stirred; then, addingan aromatic compound D of nitrogen sulfonyl or oxygen sulfonyl into a mixture; separating and purifying after reaction to obtain nitrogen-alkyl(deuterated alkyl)aromatic heterocycle or alkyl(deuterated alkyl)aryl ether. The method can realize one-step conversion from an electron withdrawing benzenesulfonyl protecting group on a nitrogen or oxygen atom to an electron donating alkyl protecting group, avoids using highly toxic alkyl halide, and has advantages of being efficient, economical, environmentally friendly, mild in condition, good in substrate universality and high in yield; the prepareddeuterated compounds can be widely applied to the fields of pharmaceutical chemistry and organic chemistry synthesis.
The graphite-catalyzed: ipso -functionalization of arylboronic acids in an aqueous medium: metal-free access to phenols, anilines, nitroarenes, and haloarenes
Badgoti, Ranveer Singh,Dandia, Anshu,Parewa, Vijay,Rathore, Kuldeep S.,Saini, Pratibha,Sharma, Ruchi
, p. 18040 - 18049 (2021/05/29)
An efficient, metal-free, and sustainable strategy has been described for the ipso-functionalization of phenylboronic acids using air as an oxidant in an aqueous medium. A range of carbon materials has been tested as carbocatalysts. To our surprise, graphite was found to be the best catalyst in terms of the turnover frequency. A broad range of valuable substituted aromatic compounds, i.e., phenols, anilines, nitroarenes, and haloarenes, has been prepared via the functionalization of the C-B bond into C-N, C-O, and many other C-X bonds. The vital role of the aromatic π-conjugation system of graphite in this protocol has been established and was observed via numerous analytic techniques. The heterogeneous nature of graphite facilitates the high recyclability of the carbocatalyst. This effective and easy system provides a multipurpose approach for the production of valuable substituted aromatic compounds without using any metals, ligands, bases, or harsh oxidants.
NCBSI/KI: A Reagent System for Iodination of Aromatics through in Situ Generation of I-Cl
Palav, Amey,Misal, Balu,Chaturbhuj, Ganesh
, p. 12467 - 12474 (2021/08/24)
In situ iodine monochloride (I-Cl) generation followed by iodination of aromatics using NCBSI/KI system has been developed. The NCBSI reagent requires no activation due to longer bond length, lower bond dissociation energy, and higher absolute charge density on nitrogen. The system is adequate for mono- and diiodination of a wide range of moderate to highly activated arenes with good yield and purity. Moreover, the precursor N-(benzenesulfonyl)benzenesulfonamide can be recovered and transformed to NCBSI, making the protocol eco-friendly and cost-effective.
Sulfated polyborate-H2O assisted tunable activation of N-iodosuccinimide for expeditious mono and diiodination of arenes
Misal, Balu,Palav, Amey,Ganwir, Prerna,Chaturbhuj, Ganesh
supporting information, (2021/05/26)
Owing to both Lewis and Bronsted acid active sites on sulfated polyborate under homogenous conditions, we were keen on developing iodination protocol of arenes that can meet the requirement of regioselectivity and higher yield. The sulfated polyborate activates N-iodosuccinimide for mono iodination of highly activated substrates viz. phenols, anilines under anhydrous condition. Water tunes sulfated polyborate to generate more Bronsted acid sites resulting in rapid activation of NIS for diiodination. The protocol was equally applicable to diiodination of 4-hydroxyphenylacetic acid to synthesize 4-hydroxy-3,5-diiodophenylacetic acid, an intermediate of tiratricol, a thyroid treatment drug. This protocol was further integrated via one-pot sequential iodination and Sonogashira coupling to synthesize aryl acetylenes, building blocks for the synthesis of a variety of specialty chemicals, API, and natural products.
Selective C-H Iodination of (Hetero)arenes
Tanwar, Lalita,B?rgel, Jonas,Lehmann, Johannes,Ritter, Tobias
supporting information, p. 5024 - 5027 (2021/06/30)
Iodoarenes are versatile intermediates and common synthetic targets in organic synthesis. Here, we present a strategy for selective C-H iodination of (hetero)arenes with a broad functional group tolerance. We demonstrate the utility and differentiation to other iodination methods of supposed sulfonyl hypoiodites for a set of carboarenes and heteroarenes.
R4NHal/NOHSO4: A Usable System for Halogenation of Isoxazoles, Pyrazoles, and beyond
Bondarenko, Oksana B.,Karetnikov, Georgy L.,Komarov, Arseniy I.,Pavlov, Aleksandr I.,Nikolaeva, Svetlana N.
supporting information, p. 322 - 332 (2021/01/14)
A new convenient and versatile halogenating system (R4NHal/NOHSO4), giving straightforward and general access to halogenated 3,5-diaryl- and alkylarylisoxazoles, pyrazoles and electron-rich benzenes from the corresponding scaffolds, is suggested. The method provides excellent regioselectivity, scalability to the gram scale, and a broad scope for both aromatics and halogens. A three-step, one-pot reaction protocol was developed, and a series of 3,5-diaryl-4-haloisoxazoles has been efficiently synthesized from 1,2-diarylcyclopropanes under suggested nitrosating-halogenating conditions.
One-Pot Synthesis of N-Iodo Sulfoximines from Sulfides
Zupanc, An?e,Jereb, Marjan
, p. 5991 - 6000 (2021/05/05)
This is the first report on the synthesis and characterization of N-iodo sulfoximines. The synthesis was designed as a room temperature one-pot cascade reaction from readily available sulfides as starting compounds, converted into sulfoximines by reaction with ammonium carbonate and (diacetoxyiodo)benzene, followed by iodination with N-iodosuccinimide or iodine in situ, in up to 90% isolated yields, also at a multigram scale. Iodination of aryls with N-iodo sulfoximines, oxidation, and conversion to N-SCF3 congeners have been demonstrated.
A convenient synthetic approach to a novel class of aryldifluoromethyl pyrimidine derivatives containing strobilurin motif as insecticidal agents
Cai, Zengfei,Cao, Yangyang,Du, Xiaohua,Hao, Shulin,Zhang, Wenliang
supporting information, (2021/10/07)
A series of aryldifluoromethyl pyrimidine compounds containing strobilurin were synthesized through bioelectronic isometric design with azoxystrobin as the lead compound and a convenient approach to aryldifluoromethylpyrimidine intermediates was developed, which features mild reaction conditions and simple operation. The title compounds and aryldifluoromethylpyrimidine intermediates were characterized by NMR and HRMS. Both 7c and 7l of the preliminary screening tests showed 100% inhibition against Mythimna separata at 100 mg/L. At 20 mg/L, the lethal rate of 7l against Mythimna separata can be up to 80%.
Photoinduced Acetylation of Anilines under Aqueous and Catalyst-Free Conditions
Yang, Yu-Ming,Yan, Wei,Hu, Han-Wei,Luo, Yimin,Tang, Zhen-Yu,Luo, Zhuangzhu
, p. 12344 - 12353 (2021/09/02)
A green and efficient visible-light induced functionalization of anilines under mild conditions has been reported. Utilizing nontoxic, cost-effective, and water-soluble diacetyl as photosensitizer and acetylating reagent, and water as the solvent, a variety of anilines were converted into the corresponding aryl ketones, iodides, and bromides. With advantages of environmentally friendly conditions, simple operation, broad substrate scope, and functional group tolerance, this reaction represents a valuable method in organic synthesis.