87199-18-6Relevant articles and documents
Preparation method of hydroxyphenylboronic acid
-
Paragraph 0030-0031; 0033, (2020/05/08)
The invention discloses a preparation method of hydroxyphenylboronic acid, which belongs to the technical field of boric acid synthesis in medical intermediates. The method comprises the following steps: starting from bromophenol, carrying out BOC, trimethylsilyl or benzyl protection, forming a Grignard reagent, reacting with borate, or carrying out one-pot reaction with borate and n-butyllithium,and hydrolyzing to obtain hydroxyphenylboronic acid. According to the invention, cheap and easily available protecting groups are adopted, so that the protecting groups are easy to remove during boronation reaction hydrolysis, industrial amplification is easy to realize, batch production is carried out on the scale of dozens of kilograms, and the process stability is good.
Scope of the palladium-catalyzed aryl borylation utilizing bis-boronic acid
Molander, Gary A.,Trice, Sarah L. J.,Kennedy, Steven M.,Dreher, Spencer D.,Tudge, Matthew T.
supporting information; experimental part, p. 11667 - 11673 (2012/09/05)
The Suzuki-Miyaura reaction has become one of the more useful tools for synthetic organic chemists. Until recently, there did not exist a direct way to make the most important component in the coupling reaction, namely the boronic acid. Current methods to make boronic acids often employ harsh or wasteful reagents to prepare boronic acid derivatives and require additional steps to afford the desired boronic acid. The scope of the previously reported palladium-catalyzed, direct boronic acid synthesis is unveiled, which includes a wide array of synthetically useful aryl electrophiles. It makes use of the newly available second generation Buchwald XPhos preformed palladium catalyst and bis-boronic acid. For ease of isolation and to preserve the often sensitive C-B bond, all boronic acids were readily converted to their more stable trifluoroborate counterparts.
Palladium-catalyzed borylation of aryl and heteroaryl halides utilizing tetrakis(dimethylamino)diboron: One step greener
Molander, Gary A.,Trice, Sarah L. J.,Kennedy, Steven M.
supporting information, p. 4814 - 4817,4 (2012/12/12)
The palladium-catalyzed borylation of aryl and heteroaryl halides with a novel borylating agent, tetrakis(dimethylamino)diboron [(Me2N) 2B-B(NMe2)2], is reported. The method is complementary to the previously reported method utilizing bis-boronic acid (BBA) in that certain substrates perform better under one set of optimized reaction conditions than the other. Because tetrakis(dimethylamino)diboron is the synthetic precursor to both BBA and bis(pinacolato)diboron (B 2Pin2), the new method represents a more atom-economical and efficient approach to current borylation methods.
Compositions for oxidatively dyeing keratin fibers and methods for using such compositions
-
Page/Page column 7, (2008/06/13)
Compositions for dyeing keratin fibers comprise (a) at least one keratin dyeing compound selected from aromatic systems which comprise at least one boronic acid or boronic ester moiety and which are capable of forming upon oxidation a nucleophile or an electrophile, (b) at least one additional keratin dyeing compound selected from the group consisting of auxiliary developers and auxiliary couplers, and (c) a cosmetically suitable medium. Methods for oxidatively dyeing keratin fibers comprise the steps of applying such compositions in the presence of an oxidizing agent and rinsing the hair. A hair coloring product in kit form comprises a first separately packaged container comprising a composition as described above and a second separately packaged container comprising an oxidizing agent.
Hydroxyphenyl-piperidin-4-ylidene-methyl-benzamide derivatives for the treatment of pain
-
, (2008/06/13)
Compounds of general formula I R1 is selected from any one of phenyl, pyridinyl, thienyl, furanyl, imidazolyl, triazolyl and thiazolyl; where each R1 phenyl ring and R1 heteroaromatic ring may optionally and independently be further substituted by 1, 2 or 3 substituents selected from straight and branched C1-C6 alkyl, NO2, CF3, C1-C6 alkoxy, chloro, fluoro, bromo, and iodo. The substitutions on the phenyl ring and on the heteroaromatic ring may take place in any position on said ring systems; are disclosed and claimed in the present application, as well as salts and pharmaceutical compositions comprising the novel compounds and their use in therapy, in particular in the management of pain.