reaction buffer (5 mL). No benzaldehyde could be detected in
the eluate. The column was washed with EtOAc (20 mL) and the
aqueous buffer was extracted with EtOAc. The combined extracts
were dried (MgSO4). After concentration under reduced pressure,
the crude product was purified by flash column chromatography
(petroleum ether–EtOAc 5 : 1) to yield the title compound 11
(31.5 mg, 0.15 mmol, 99%). The NMR data were found to be
identical with those reported in the literature.15
1 H, H-6b), 4.16 (br m, 1H, H-3), 3.93 (ddd, J = 10.2, 5.8 and
2.4 Hz, 1 H, H-5), 3.62 (br m, 1 H, H-4), 2.94 (s, 1 H, -OH),
2.08 (s, 3 H, OAc) ppm. 13C NMR (200 MHz, d6-acetone, d6-
acetone = 29.8 ppm): d = 171.0, 143.7, 105.2, 77.2, 70.6, 69.9, 63.8,
20.6 ppm.
Acknowledgements
[a]2D0 −141.2 (c 0.99 in acetone) 98% ee; Rf: 0.35 (CH2Cl2).
HRMS-ESI: m/z [M + Na]+ calcd for C14H11O2Na: 235.0784,
found: 235.0779.
This work was supported by the Deutsche Forschungsgemein-
schaft (DFG; grants Ki 397/8-1 and excellence cluster REBIRTH)
and the Fonds der Chemischen Industrie. We thank Prof. Martina
Pohl (University of Du¨sseldorf) for the expression vector pKK233-
2/BALHis6 and Prof. Uwe T. Bornscheuer (University of Greif-
swald) for a sample of BsubpNBE.
Flow-through synthesis of (R)-2-hydroxy-1-phenylpropan-1-one
(13)
BAL (EC 4.1.2.38)11 containing cell lysate [750 lL, 25× concen-
trated in 50 mM potassium phosphate pH 8.0, E. coli SG13009
transformed with pKK233-2/BALHis6 and induced with IPTG
(0.1 mmol); cell lysis by ultrasonification on ice] was centrifuged
and diluted with the same volume of lysis buffer (50 mM sodium
phosphate pH 8.0, 300 mM NaCl, 10 mM imidazole, 10%
glycerol) and pumped through the Ni2+-NTA PASSflow reactor
9 at 0.5 mL min−1. The column was washed with 3 mL lysis buffer
and with 8 mL washing buffer (50 mM sodium phosphate pH 8.0,
300 mM NaCl, 20 mM imidazole, 10% glycerol). The reactor
was equilibrated with 5 mL reaction buffer [125 mM sodium
phosphate pH 7.0, containing DMSO (25%), MgSO4 (2.5 mM)
and thiamine diphosphate (0.25 mM)]. A mixture of benzaldehyde
(30 lL, 0.3 mmol) and acetaldehyde (85 lL, 1.5 mmol) in reaction
buffer (6 mL, see above) was pumped through the reactor in
a circular mode. After 3 h at 37 ◦C no benzaldehyde could be
detected in the eluate by GC, and the reaction was stopped. The
column was washed with ethyl acetate (20 mL) and the aqueous
buffer was extracted with ethyl acetate. The combined extracts
were dried (MgSO4). After concentration under reduced pressure,
the crude product was purified by flash column chromatography
(petroleum ether–EtOAc 5 : 1) to yield the title compound 13
(42 mg, 0.28 mmol, 92%). The NMR data were found to be
identical with those reported in the literature.15
References and notes
1 N. End and K.-U. Scho¨ning, Top. Curr. Chem., 2004, 242, 273–317.
2 U. T. Bornscheuer, Angew. Chem., 2003, 115, 3458–3459; U. T.
Bornscheuer, Angew. Chem., Int. Ed., 2003, 42, 3336–3337; A. M.
Klibanov, Anal. Biochem., 1979, 79, 1–25; H. R. Luckarift, J. C. Spain,
R. R. Naik and M. O. Stone, Nat. Biotechnol., 2004, 22, 211–213; P. T.
Vasudevan, N. Lo´pez-Corte´s, H. Caswell, D. Reyes-Duarte, F. J. Plou,
A. Ballesteros, K. Como and T. Thomson, Biotechnol. Lett., 2004,
26, 473–477; D. S. Wentorth, D. Skonberg, D. W. Donahue and A.
Ghanem, J. Appl. Polym. Sci., 2004, 91, 1294–1299; A. Basso, L. De
Martin, L. Gardossi, G. Margetts, I. Brazendale, A. Y. Bosma, R. V.
Ulijn and S. L. Flitsch, Chem. Commun., 2003, 1296–1297; R. Torres,
C. Mateo, G. Fernandez-Lorente, C. Ortiz, M. Fuentes, J. M. Palomo,
J. M. Guisan and R. Fernandez-Lafuente, Biotechnol. Prog., 2003, 19,
1056–1060; A. Heilmann, N. Teuscher, A. Kiesow, D. Janasek and U.
Spohn, J. Nanosci. Nanotechnol., 2003, 3, 375–379; X. Gao, K. M. K.
Yu, K. Y. Tam and S. C. Tsang, Chem. Commun., 2003, 2998–2999; C.
Lei, Y. Shin, J. Liu and E. J. Ackerman, J. Am. Chem. Soc., 2002, 124,
11242–11243; H. A. Sousa, C. Rodrigues, E. Klein, C. A. M. Afonso
and J. G. Crespo, Enzyme Microb. Technol., 2001, 29, 625–634.
3 T. Honda, M. Miyazaki, H. Nakamura and H. Maeda, Adv. Synth.
Catal., 2006, 348, 2163–2171.
4 W. Solodenko, K. Mennecke and A. Kirschning, Chem.–Eur. J., 2006,
12, 5972–5990.
5 G. Jas and A. Kirschning, Chem.–Eur. J., 2003, 9, 5708–5723.
6 A. Kirschning, C. Altwicker, G. Dra¨ger, J. Harders, N. Hoffmann,
U. Hoffmann, H. Scho¨nfeld, W. Solodenko and U. Kunz, Angew.
Chem., 2001, 113, 4118–4120; A. Kirschning, C. Altwicker, G. Dra¨ger,
J. Harders, N. Hoffmann, U. Hoffmann, H. Scho¨nfeld, W. Solodenko
and U. Kunz, Angew. Chem., Int. Ed., 2001, 40, 3995–3998; U. Kunz,
A. Kirschning, C. Altwicker and W. Solodenko, J. Chromatogr., A,
2003, 1006, 241–249; U. Kunz, H. Scho¨nfeld, W. Solodenko, G. Jas
and A. Kirschning, Ind. Eng. Chem. Res., 2005, 44, 8458–8467; U.
Kunz, A. Kirschning, H.-L. Wen, W. Solodenko, R. Cecillia, C. O.
Kappe and T. Turek, Catal. Today, 2005, 105, 318–324; A. Kirschning,
K. Mennecke, U. Kunz, A. Michrowska and K. Grela, J. Am. Chem.
Soc., 2006, 128, 13261–13267; W. Solodenko, G. Jas, U. Kunz and A.
Kirschning, Synthesis, 2007, 583–589.
Flow-through synthesis of 6-O-acetyl-D-glucal (17)
BsubpNBE (5 mg) in loading buffer (1 mL, 50 mM sodium
phosphate pH 8.0, 300 mM NaCl, 10% glycerol) was pumped
though the Ni2+-NTA PASSflow reactor 9 at 0.5 mL min−1. The
column was washed with 3 mL loading buffer and 7 mL reaction
buffer (50 mM sodium phosphate pH 7.0). A solution of tri-O-
acetyl-D-glucal (16, 100 mg, 0.38 mmol) in reaction buffer (45 mL)
and MTBE (5 mL) was pumped through the reactor in a circular
mode. After 60 h at 37 ◦C no starting material could be detected
by TLC, and the column was washed with MTBE (20 mL). The
combined aqueous and organic extracts were dried and purified by
flash column chromatography (EtOAc) to yield the title compound
17 (57 mg, 0.30 mmol, 80%) and D-glucal 18 (7 mg 0.05 mmol,
12%).
7 C. Auge´, A. Malleron, H. Tahrat, A. Marc, J.-J. Goergen, M. Cerutti,
W.-F. Steelant, P. Delannoy and A. Lubineau, Chem. Commun., 2000,
2017–2018; J. Nahalka, Z. Liu, X. Chen and P. G. Wang, Chem.–Eur. J.,
2003, 2, 373–377.
8 B. C. Roy and S. Mallik, J. Org. Chem., 1999, 64, 2969–2974; S. Gritsch,
K. Neumaler, L. Schmitt and R. Tampe, Biosens. Bioelectron., 1995,
10, 805–812.
9 S. Mallik and I. Mallik, Synlett, 1996, 734–736.
10 For both linker systems we prepared five different polymeric samples
(DVB/VBC/vinylpyrrolidinone vol %): sample 1 = 10 : 50 : 40;
sample 2 = 5 : 95 : 0; sample 3 = 10/70/20; sample 4 = 20 : 60 :
20 and sample 5 = 5 : 60 : 35. Sample 3 gave the highest loading of
tyrosine linker (30%) and protein immobilisation.
1H NMR (400 MHz, d6-acetone, d5-acetone = 2.05 ppm): d =
6.31 (dd, J = 6.0 and 1.5 Hz, 1 H, H-1), 4.72 (dd, J = 6.0 and
2.2 Hz, 1 H, H-2), 4.58 (br d, J = 4.4 Hz, 1 H, OH), 4.43 (dd,
J = 12.0 and 2.4 Hz, 1 H, H-6a), 4.32 (dd, J = 12.0 and 5.8 Hz,
11 M. Sanchez-Gonzalez and J. P. M. Rosazza, Adv. Synth. Catal.,
¨
2003, 345, 819–824; A. S. Demir, O. Sesenoglu, P. Du¨nkelmann and
M. Mu¨ller, Org. Lett., 2003, 5, 2047–2050; A. S. Demir, O. Sesenoglu,
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 3657–3664 | 3663
©