Many techniques have been developed to synthesize complex
guanidiniums.6-9 However, one of the simplest guanidinium
motifs containing complex functionality is that obtained by
guanylation of the amino group of an R-amino acid, generating
an R-guanidino acid (Chart 1).5,7,9 We were particularly intrigued
by the use of R-substituted guandiniums derived from R-guani-
dino acids to achieve high affinity and high specificity in
guanidinium-mediated biomolecular recognition.
Convergent and Stereospecific Synthesis of
Molecules Containing r-Functionalized
Guanidiniums via r-Guanidino Acids
Shalini Balakrishnan, Chen Zhao, and Neal J. Zondlo*
Department of Chemistry and Biochemistry, UniVersity of
Delaware, Newark, Delaware 19716
In a particularly noteworthy example highlighting the poten-
tial of R-substituted guanidiniums for macromolecular recogni-
tion, the groups of Wells and Arkin at Sunesis have incorporated
a single R-guanidino acid moiety into a series of high-affinity
small-molecule ligands for interleukin-2 (IL-2).5 In this work,
both the functional group present and the stereochemistry at
the R-position exquisitely impacted affinity for the target protein.
For example, in structure-activity studies they observed a
greater than 25-fold increase in IL-2 affinity for a molecule
derived from D-valine over molecules derived from either
L-valine or glycine.5d X-ray crystallography of the complexes
with IL-2 revealed extensive contacts between IL-2 and both
the guanidinium and side chain.5a-c,e This work highlights the
ReceiVed August 13, 2007
To introduce chirality and functional groups adjacent to
guanidiniums to modulate specificity and affinity in recogni-
tion, N,N′-bis(Boc)-R-guanidino acids were synthesized from
R-amino acid methyl esters. Protected R-guanidino acids
coupled to cyclohexylamine and trans-1,4-diaminocyclo-
hexane in good yield and with retention of stereochemistry.
Boc deprotection was conducted under mild acidic conditions
(0.5 M HCl/EtOAc) to minimize epimerization. The depro-
tected guanidinium is configurationally stable under more
acidic conditions. This approach represents a practical,
convergent, stereospecific methodology to introduce chiral
R-substituted guanidinium groups into molecules.
(5) (a) Braisted, A. C.; Oslob, J. D.; Delano, W. L.; Hyde, J.; McDowell,
R. S.; Waal, N.; Yu, C.; Arkin, M. R.; Raimundo, B. C. J. Am. Chem. Soc.
2003, 125, 3714-3715. (b) Thanos, C. D.; Randal, M.; Wells, J. A. J. Am.
Chem. Soc. 2003, 125, 15280-15281. (c) Arkin, M. R.; Randal, M.;
DeLano, W. L.; Hyde, J.; Luong, T. N.; Oslob, J. D.; Raphael, D. R.; Taylor,
L.; Wang, J.; McDowell, R. S.; Wells, J. A.; Braisted, A. C. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 1603-1608. (d) Raimunddo, B. C.; Oslob, J.
D.; Braisted, A. C.; Hyde, J.; McDowell, R. S.; Randal, M.; Waal, N.;
Wilkinson, J.; Yu, C. H.; Arkin, M. R. J. Med. Chem. 2004, 47, 3111-
3130. (e) Thanos, C. D.; DeLano, W. L.; Wells, J. A. Proc. Natl. Acad.
Sci. U.S.A. 2006, 103, 15422-15427.
(6) (a) Katritzky, A. R.; Rogovoy, B. V. ArkiVoc 2005 (iV), 49-87. (b)
Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. Tetrahedron Lett. 1993, 34,
3389-3392. (c) Kent, D. R.; Cody, W. L.; Doherty, A. M. Tetrahedron
Lett. 1996, 37, 8711-8714. (d) Feichtinger, K.; Zapf, C.; Sings, H. L.;
Goodman, M. J. Org. Chem. 1998, 63, 3804-3805. (e) Dodd, D. S.;
Wallace, O. B. Tetrahedron Lett. 1998, 39, 5701-5704. (f) Chen, J.;
Pattarawarapan, M.; Zhang, A. J.; Burgess, K. J. Comb. Chem. 2000, 2,
276-281. (g) Linton, B. R.; Carr, A. J.; Orner, B. P.; Hamilton, A. D. J.
Org. Chem. 2000, 65, 1566-1568. (h) Katritzky, A. R.; Rogovoy, B. V.;
Chassaing, C.; Vvedensky, V. J. Org. Chem. 2000, 65, 8080-8082. (i)
Zapf, C. W.; Creighton, C. J.; Tomioka, M.; Goodman, M. Org. Lett. 2001,
3, 1133-1136. (j) Musiol, H. J.; Moroder, L. Org. Lett. 2001, 3, 3859-
3861. (k) Zhang, Y.; Kennan, A. J. Org. Lett. 2001, 3, 2341-2344. (l)
Manimala, J. C.; Anslyn, E. V. Tetrahedron Lett. 2002, 43, 565-567. (m)
Manimala, J. C.; Anslyn, E. V. Eur. J. Org. Chem. 2002, 3909-3922. (n)
Bartoli, S.; Jensen, K. B.; Kilburn, J. D. J. Org. Chem. 2003, 68, 9416-
9422. (o) Powell, D. A.; Ramsden, P. D.; Batey, R. A. J. Org. Chem. 2003,
68, 2300-2309. (p) Gers, T.; Kunce, D.; Markowski, P.; Izdebski, J.
Synthesis 2004, 37-42.
Guanidiniums are widely used to specifically recognize
diverse protein, DNA, and RNA targets.1 Guanidiniums achieve
affinity and specificity by virtue of potentially bidentate
electrostatic and hydrogen-bonding interactions, yielding par-
ticularly favorable interactions with phosphates and carboxy-
lates.2 Guanidiniums have been generally applied in the
development of synthetic receptors3 and have been broadly
applied in medicinal chemistry as components of ligands for
complex biomedical targets, particularly as mimics of RGD
motifs to bind integrin receptors.4,5
(7) Synthesis of protected R-guanidino acids or derivatives: (a) Poss,
M. A.; Iwanowicz, E.; Reid, J. A.; Lin, J.; Gu, Z. X. Tetrahedron Lett.
1992, 33, 5933-5936. (b) Drake, B.; Patek, M.; Lebl, M. Synthesis 1994,
579-582. (c) Lal, B.; Gangopadhyay, A. K. Tetrahedron Lett. 1996, 37,
2483-2486. (d) Yong, Y. F.; Kowalski, J. A.; Lipton, M. A. J. Org. Chem.
1997, 62, 1540-1542. (e) Yong, Y. F.; Kowalski, J. A.; Thoen, J. C.; Lipton,
M. A. Tetrahedron Lett. 1999, 40, 53-56. (f) Xuereb, H.; Maletic, M.;
Gildersleeve, J.; Pelczer, I.; Kahne, D. J. Am. Chem. Soc. 2000, 122, 1883-
1890. (g) Suhs, T.; Ko¨nig, B. Chem.-Eur. J. 2006, 12, 8150-8157.
(8) (a) Zhang, Z. Y.; Van Aerschot, A.; Hendrix, C.; Busson, R.; David,
F.; Sandra, P.; Herdewijn, P. Tetrahedron 2000, 56, 2513-2522. (b) Mamai,
A.; Madalengoitia, J. S. Org. Lett. 2001, 3, 561-564.
(9) Synthesis of unprotected R-guanidino acids from R-amino acids: (a)
Rowley, G. L.; Greenleaf, A. L.; Kenyon, G. L. J. Am. Chem. Soc. 1971,
93, 5542-5551. (b) Miller, A. E.; Bischoff, J. J. Synthesis 1986, 777-
779. (c) Jursic, B. S.; Neumann, D.; McPherson, A. Synthesis 2000, 1656-
1658. (d) Siemion, I. Z.; Gawlowska, M.; Slepokura, K.; Biernat, M.;
Wieczorek, Z. Peptides 2005, 26, 1543-1549.
(1) (a) Berlinck, R. G. S. Nat. Prod. Rep. 2002, 19, 617-649. (b)
Berlinck, R. G. S. Nat. Prod. Rep. 1999, 16, 339-365. (c) Berlinck, R. G.
S. Nat. Prod. Rep. 1996, 13, 377-409.
(2) Schug, K. A.; Lindner, W. Chem. ReV. 2005, 105, 67-113.
(3) (a) Kneeland, D. M.; Ariga, K.; Lynch, V. M.; Huang, C. Y.; Anslyn,
E. V. J. Am. Chem. Soc. 1993, 115, 10042-10055. (b) Albert, J. S.;
Goodman, M. S.; Hamilton, A. D. J. Am. Chem. Soc. 1995, 117, 1143-
1144. (c) Peczuh, M. W.; Hamilton, A. D.; SanchezQuesada, J.; deMendoza,
J.; Haack, T.; Giralt, E. J. Am. Chem. Soc. 1997, 119, 9327-9328. (d)
Orner, B. P.; Hamilton, A. D. J. Inclusion Phenom. Macrocycl. Chem. 2001,
41, 141-147. (e) Best, M. D.; Tobey, S. L.; Anslyn, E. V. Coord. Chem.
ReV. 2003, 240, 3-15.
(4) (a) Perreault, D. M.; Cabell, L. A.; Anslyn, E. V. Bioorg. Med. Chem.
1997, 5, 1209-1220. (b) Luedtke, N. W.; Baker, T. J.; Goodman, M.; Tor,
Y. J. Am. Chem. Soc. 2000, 122, 12035-12036. (c) Luedtke, N. W.;
Carmichael, P.; Tor, Y. J. Am. Chem. Soc. 2003, 125, 12374-12375. (d)
Peterlin-Masic, L.; Kikelj, D. Tetrahedron 2001, 57, 7073-7105.
10.1021/jo701766c CCC: $37.00 © 2007 American Chemical Society
Published on Web 11/03/2007
9834
J. Org. Chem. 2007, 72, 9834-9837