Photochemical & Photobiological Sciences
Paper
Acknowledgements
Financial supports by the European Union and the Greek
Ministry of Education (ERC-09, MESOPOROUS-NPs) and
(ARISTEIA-2691) are kindly acknowledged. INL is acknowled-
ging COST action CM1201.
Notes and references
1 R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidations
of Organic Compounds, Academic Press, New York, 1981.
2 (a) R. A. Sheldon and I. W. C. E. Arends, Catal. Metal
Complexes, 2003, vol. 26, ch. 3, p. 123; (b) R. A. Sheldon,
I. W. C. E. Arends and A. Dijksman, Catal. Today, 2000, 57,
157; (c) R. Neumann, Prog. Inorg. Chem., 1998, 47, 317;
(d) N. Mizuno and M. Misono, Chem. Rev., 1998, 98, 199;
(e) R. Neumann and M. Levin, J. Org. Chem., 1991, 56,
5707; (f) R. Neumann, A. M. Khenkin and I. Vigderganz,
Chem. – Eur. J., 2000, 6, 875; (g) R. Ben-Daniel, P. Alsters
and R. Neumann, J. Org. Chem., 2001, 66, 8650;
(h) M. A. Khenkin, J. W. L. Shimon and R. Neumann, Inorg.
Chem., 2003, 42, 3331.
Scheme 3 Proposed mechanistic pathway for the photocatalyzed oxi-
dation of aryl alcohols over mesoporous DT-MTA.
conduction band of TiO2 (−0.5 V vs. NHE) to the lowest un-
occupied molecular orbital (LUMO) of decatungstate clusters (or
to the long-lived intermediate wO),18 leading to the formation
of W10O325− reduced species. Once these species are produced,
they can be readily re-oxidized by molecular oxygen, forming
hydroperoxy and/or superoxide anion radicals. On the other
hand, the TiO2(h+) holes can induce the oxidation of alcohols
producing the corresponding cationic radicals (ArOH•+).
Finally, these radical intermediates can be further reacted with
in situ produced superoxide anions to form the corresponding
carbonyl products. However, under our irradiation conditions
(λ > 320 nm), W10O324− are also be excited to the locally excited
state W10O324−*, which undergoes fast decay to the relatively
long lived intermediate wO.8,18 Subsequent hydrogen atom
abstraction from the benzylic position of the alcohol produces
3 D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, Chem. Soc.
Rev., 2009, 38, 1999.
4 Selected reviews: (a) M. Zhang, C. Chen, W. Ma and
J. Zhao, Angew. Chem., Int. Ed., 2008, 47, 9730;
(b) G. Palmisano, V. Augugliaro, M. Pagliaro and
L. Palmisano, Chem. Commun., 2007, 3425; (c) C. C. Chen,
W. H. Ma and J. C. Zhao, Chem. Soc. Rev., 2010, 39, 4206;
(d) A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev.,
1995, 95, 735; (e) M. R. Hoffmann, S. T. Martin, W. Choi
and D. W. Bahnemann, Chem. Rev., 1995, 95, 69;
(f) V. Augugliaro and L. Palmisano, ChemSusChem, 2010, 3,
1135; (g) A. Kubacka, M. Fernández-García and G. Colón,
Chem. Rev., 2012, 112, 1555; (h) X. Chen and S. S. Mao,
Chem. Rev., 2007, 107, 2891; (i) J. C. Yu, G. Li, X. Wang,
X. Hu, C. W. Leung and Z. Zhang, Chem. Commun., 2006,
2717; ( j) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and
Y. Taga, Science, 2001, 293, 269; (k) O. S. Mohamed,
A. M. Gaber and A. A. Abdel-Wahab, J. Photochem. Photo-
biol., A, 2002, 148, 205; (l) T. Mitkina, C. Stanglmair,
W. Setzer, M. Gruber, H. Kisch and B. Konig, Org. Biomol.
Chem., 2012, 10, 3556.
5−
the one-electron-reduced species H+W10O32 and a radical
intermediate. Thus, a HAT route between the excited states of
wO and aryl alcohols cannot be excluded, giving a significant
amount of the observed deoxygenated products.
Conclusions
In conclusion, the aerobic photooxidation of various aryl
4−
alcohols by the [Bu4N]4W10O32 (TBADT) complex and W10O32
supported on mesoporous TiO2 nanoparticle assemblies
(DT-MTA) has been reported. Our experiments showed that
both catalytic systems are highly active and selective for the
oxidation of aryl alcohols, under mild conditions. The DT-MTA
used in oxidation reactions was found to be stable and active
under the present conditions, providing a unique system that
combines long-term stability and high activity. From the
mechanistic point of view, a HAT mechanism was proposed
for the decatungstate catalyzed oxidations, while an ET
mechanism was predominated for the oxidation reactions over
the DT-MTA catalyst. Synthesis and catalytic applications of
different POM-supported mesoporous TiO2 nanoparticle
assemblies are in progress.
5 (a) A. Maldotti and A. Molinari, Top. Curr. Chem., 2011,
303, 185; (b) M. Fagnoni, D. Dondi, D. Ravelli and
A. Albini, Chem. Rev., 2007, 107, 2725.
6 Special issues are devoted to polyoxometalates:
(a) C. L. Hill, ed., Chem. Rev., 1998, 98, 1; (b) C. L. Hill, ed.,
J. Mol. Catal. A: Chem., 2007, 262, 1.
7 Selected
reviews
in
polyoxometalates
catalysis:
(a) C. L. Hill, M. Christina and C. M. Prosser-McCartha,
Coord. Chem. Rev., 1995, 143, 407; (b) C. L. Hill, Synlett,
1995,
127;
(c)
A.
Hiskia,
A.
Mylonas
and
E. Papaconstantinou, Chem. Soc. Rev., 2001, 30, 62;
(d) A. Maldotti, A. Molinari and R. Amadelli, Chem. Rev.,
This journal is © The Royal Society of Chemistry and Owner Societies 2014
Photochem. Photobiol. Sci.