Brief Articles
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 21 5241
improving oral drug absorption. Eur. J. Pharm. Sci. 2004, 21, 3-16.
(e) Herrera-Ruiz, D.; Knipp, G. T. Current perspectives on established
and putative mammalian oligopeptide transporters. J. Pharm. Sci.
2003, 92, 691-714. (f) Rubio-Aliaga, I.; Daniel, H. Mammalian
peptide transporters as targets for drug delivery. Trends Pharmacol.
Sci. 2002, 23, 434-440. (g) Brodin, B.; Nielsen, C. U.; Steffansen,
B.; Frøkjaer, S. Transport of peptidomimetic drugs by the intestinal
di/tri-peptide transporter, PepT1. Pharmacol. Toxicol. 2002, 90, 285-
296.
Peptide Stability During the Experiments. The stability of
the compounds is judged by the recovery after the Caco-2 trans-
port experiments; the recovery was determined as 101 ( 4%
(average of all experiments). No compound showed significant
deviation.
Acknowledgment. We thank Drs. Ju¨rg Schreiber, Meinrad
Brenner, and Thierry Sifferlen for providing some of the
protected â- and γ-peptides. Financial support was obtained from
The Knut and Alice Wallenberg Foundation and The Swedish
Research Council.
(8) (a) Vig, B. S.; Stouch, T. R.; Timoszyk, J. K.; Quan, Y.; Wall, D.
A.; Smith, R. L.; Faria, T. N. Human PEPT1 pharmacophore
distinguishes between dipeptide transport and binding. J. Med. Chem.
2006, 49, 3636-3644. (b) Biegel, A.; Gebauer, S.; Hartrodt, B.;
Brandsch, M.; Neubert, K.; Thondorf, I. Three-dimensional quantita-
tive structure-activity relationship analyses of â-lactam antibiotics
and tripeptides as substrates of the mammalian H+/peptide cotrans-
porter PEPT1. J. Med. Chem. 2005, 48, 4410-4419. (c) Bailey, P.
D.; Boyd, C. A. R.; Collier, I. D.; George, J. G.; Kellett, G. L.;
Meredith, D.; Morgan, K. M.; Pettecrew, R.; Price, R. A.; Pritchard,
R. G. Conformational and spacial preferences for substrates of PepT1.
Chem. Commun. 2005, 5352-5354. (d) Våbenø, J.; Nielsen, C. U.;
Steffansen, B.; Lejon, T.; Sylte, I.; Jørgensen, F. S.; Luthman, K.
Conformational restrictions in ligand binding to the human intestinal
di-/tripeptide transporter: Implications for design of hPEPT1 targeted
prodrugs Bioorg. Med. Chem. 2005, 13, 1977-1988. (e) Gebauer,
S.; Knu¨tter, I.; Hartrodt, B.; Brandsch, M.; Neubert, K.; Thondorf,
I. Three-dimensional quantitative structure-activity relationship analy-
ses of peptide substrates of the mammalian H+/peptide cotransporter
PEPT1. J. Med. Chem. 2003, 46, 5725-5734.
(9) (a) Niida, A.; Tomita, K.; Mizumoto, M.; Tanigaki, H.; Terada, T.;
Oishi, S.; Otaka, A.; Inui, K.; Fujii, N. Unequivocal synthesis of
(Z)-alkene and (E)-fluoroalkene dipeptide isosteres to probe structural
requirements of the peptide transporter PEPT1. Org. Lett. 2006, 8,
613-616. (b) Våbenø, J.; Lejon, T.; Nielsen, C. U.; Steffansen, B.;
Chen, W.; Ouyang, H.; Borchardt, R. T.; Luthman, K. Phe-Gly
dipeptidomimetics designed for the di-/tripeptide transporters PEPT1
and PEPT2: Synthesis and biological investigations. J. Med. Chem.
2004, 47, 1060-1069. (c) Våbenø, J.; Nielsen, C. U.; Ingebrigtsen,
T.; Lejon, T.; Steffansen B.; Luthman K. Dipeptidomimetic keto-
methylene isosteres as pro-moieties for drug transport via the human
intestinal di-/tripeptide transporter hPEPT1: Design, synthesis,
stability, and biological investigations. J. Med. Chem. 2004, 47,
4755-4765.
(10) (a) Nielsen, C. U.; Supuran, C. T.; Scozzafava, A.; Frøkjaer, S.;
Steffansen, B.; Brodin, B. Transport characteristics of L-carnosine
and the anticancer derivative 4-toluenesulfonylureido-carnosine in a
human epithelial cell line. Pharm. Res. 2002, 19, 1337-1344. (b)
Inui, K.-I.; Tomita, Y.; Katsura, T.; Okano, T.; Takano, M.; Hori,
Ri. Hydrogen ion coupled active transport of bestatin via the dipeptide
transport system in rabbit intestinal brush-border membranes. J.
Pharm. Exp. Ther. 1992, 260, 482-486. (c) Addison, J. M.; Burston,
D.; Dalrymple, J. A.; Matthews, D. M.; Payne, J. W.; Sleisenger,
M. H.; Wilkinson, S. Common mechanism for transport of di- and
tripeptides by hamster jejunum in vitro. Clin. Sci. Mol. Med. 1975,
49, 313-322.
(11) Tamura, K.; Bhatnagar, P. K.; Takata, J. S.; Lee, C.-P.; Smith, P.
L.; Borchardt, R. T. Metabolism, uptake and transepithelial transport
of the diastereomers of Val-Val in the human intestinal cell line,
Caco-2. Pharm. Res. 1996, 13, 1213-1218.
(12) de Vrueh, R. L. A.; Smith, P. L.; Lee, C. P. Transport of L-valine-
acyclovir via the oligopeptide transporter in the human intestinal cell
line, Caco-2. J. Pharmacol. Exp. Ther. 1998, 286, 1166-1170.
(13) Sugawara, M.; Huang, W.; Fei, Y. J.; Leibach, F. H.; Ganapathy,
V.; Ganapathy, M. E. Transport of valganciclovir, a ganciclovir
prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci.
2000, 89, 781-789.
Supporting Information Available: Detailed experimental
procedures for the Caco-2 cell studies and the synthesis of
compounds 1-9. This material is available free of charge via the
References
(1) For reviews see: (a) Seebach, D.; Beck, A. K.; Bierbaum, D. J. The
world of â- and γ-peptides comprised of homologated proteinogenic
amino acids and other components. Chem. BiodiVersity 2004, 1,
1111-1239. (b) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F.
â-Peptides: From structure to function. Chem. ReV. 2001, 101, 3219-
3232.
(2) (a) Seebach, D.; Overhand, M.; Kuehnle, F. N. M.; Martinoni, B.;
Oberer, L.; Hommel, U.; Widmer, H. â-Peptides: Synthesis by Arndt-
Eistert homologation with concomitant peptide coupling. Structure
determination by NMR and CD spectroscopy and by X-ray crystal-
lography. Helical secondary structure of a â-hexapeptide in solution
and its stability towards pepsin. HelV. Chim. Acta 1996, 79, 913-
941. (b) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D.
R.; Gellman, S. H. â-Peptide foldamers: Robust helix formation in
a new family of â-amino acid oligomers J. Am. Chem. Soc. 1996,
118, 13071-13072. (c) Seebach, D.; Abele, S.; Gademann, K.; Jaun,
B. Pleated sheets and turns of â-peptides with proteinogenic side
chains. Angew. Chem., Int. Ed. 1999, 38, 1595-1597.
(3) (a) Brenner, M.; Seebach, D. Design, synthesis, NMR-solution and
X-ray crystal structure of N-acyl-γ-dipeptide amides that form a beta
II′-type turn. HelV. Chim. Acta 2001, 84, 2155-2166. (b) Seebach,
D.; Schaeffer, L.; Brenner, M.; Hoyer, D. Design and synthesis of
γ-dipeptide derivatives with submicromolar affinities for human
somatostatin receptors. Angew. Chem., Int. Ed. 2003, 42, 776-778.
(c) Nunn, C.; Rueping, M.; Langenegger, D.; Schuepbach, E.;
Kimmerlin, T.; Micuch, P.; Hurt, K.; Seebach, D.; Hoyer, D. â2/â3
and R/â3 Tetrapeptide derivatives as potent agonists at somatostatin
sst4 receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2003, 367,
95-103.
(4) For an overview see: (a) Arvidsson, P. I.; Ryder, N. S.; Weiss, H.
M.; Hook, D. F.; Escalante, J.; Seebach, D. Exploring the antibacterial
and hemolytic activity of shorter- and longer-chain â-, R,â-, and
γ-peptides, and of â-peptides from â2-3-aza- and â3-2-methylidene-
amino acids bearing proteinogenic side chainssA survey. Chem.
BiodiVersity 2005, 2, 401-420. (b) Koyack, M. J.; Cheng, R. P.
Design and synthesis of â-peptides with biological activity. Methods
Mol. Biol. 2006, 340 (Protein Design), 95-109.
(5) (a) Werder, M.; Hauser, H.; Abele, S.; Seebach, D. â-Peptides as
inhibitors of small-intestinal cholestorol and fat absorption. HelV.
Chim. Acta 1999, 82, 1774-1783. (b) Kritzer, J. A.; Lear, J. D.;
Hodson, M. E.; Schepartz, A. Helical â-peptide inhibitors of the p53-
hDM2 interaction. J. Am. Chem. Soc. 2004, 126, 9468-9469.
(6) (a) Frackenpohl, J.; Arvidsson, P. I.; Schreiber, J. V.; Seebach, D.
The outstanding biological stability of â- and γ-peptides toward
proteolytic enzymes: An in vitro investigation with fifteen peptidases.
ChemBioChem 2001, 2, 445-455. (b) Wiegand, H.; Wirz, B.;
Schweitzer, A.; Camenisch, G. P.; Perez, M. I. R.; Gross, G.;
Woessner, R.; Voges, R.; Arvidsson, P. I.; Frackenpohl, J.; Seebach,
D. The outstanding metabolic stability of a 14C-labeled â-nonapeptide
in rats in-vitro and in-vivo pharmacokinetic studies. Biopharm. Drug
Dispos. 2002, 23, 251-262.
(7) For reviews of PepT1 transport, see for example: (a) Nielsen, C.
U.; Våbenø, J.; Andersen, R.; Brodin, B.; Steffansen, B. Recent
advances in therapeutic applications of human peptide transporters.
Expert Opin. Ther. Pat. 2005, 15, 153-166 and references therein.
(b) Steffansen, B.; Nielsen, C. U.; Frøkjaer, S. Delivery aspects of
small peptides and substrates for peptide transporters. Eur. J. Pharm.
Biopharm. 2005, 60, 241-245. (c) Daniel, H.; Kottra, G. The proton
oligopeptide cotransporter family SLC15 in physiology and phar-
macology. Pfluegers Arch. 2004, 447, 610-618. (d) Steffansen, B.;
Nielsen, C. U.; Brodin, B.; Eriksson, A. H.; Andersen, R.; Frøkjaer,
S. Intestinal solute carriers: an overview of trends and strategies for
(14) (a) Brandsch, M.; Thunecke, F.; Kullertz, G.; Schutkowski, M.;
Fischer, G.; Neubert, K. Evidence for the absolute conformational
specificity of the intestinal H+/peptide symporter, PEPT1. J. Biol.
Chem. 1998, 273, 3861-3864. (b) Bailey, P. D.; Boyd, C. A. R.;
Collier, I. D.; Kellett, G. L.; Meredith, D.; Morgan, K. M.; Pettecrew,
R.; Price, R. A. Probing dipeptide trans/cis stereochemistry using
pH control of thiopeptide analogues, and application to the PepT1
transporter. Org. Biomol. Chem. 2005, 3, 4038-4039.
(15) N-(4-[2-(1,2,3,4-Tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-
phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (Elac-
ridar, GF120918) is a potent P-glycoprotein inhibitor. See, for
example: Hyafil, F.; Vergely, C.; DuVignaud, P.; Grand-Perret, T.
In vitro and in vivo reversal of multidrug resistance by GF 120918,
an acridonecarboxamide derivative Cancer Res. 1993, 53 (19), 4595-
4602. Bachmeier, C. J.; Trickler, W. J.; Miller, D. W. Comparison
of drug efflux transport kinetics in various blood-brain barrier
models. Drug Metab. Dispos. 2006, 34, 998-1003.