aryl isothiocyanates act as the highly reactive C+–C–S2 dipolar
species toward DMAD to produce [3 + 2] spiro-thiophene
cycloadducts. The stability and reactivity of the resulting spiro-
thiophene cycloadducts, however, are strongly dependent on
the structures of the heterocyclic N-carbenes. Apparently,
the benzimidazoline-spiro-thiophenes and imidazolidine-spiro-
thiophenes are stable at the ambident temperature. The imidazo-
line-spiro-thiophene and thiazoline-spiro-thiophene analogues, on
the contrary, are not isolable products under the reaction
conditions. Interestingly, imidazoline-spiro-thiophene and thiazo-
line-spiro-thiophene intermediates follow dramatically different
ring transformation pathways. For example, imidazoline-spiro-
thiophenes undergo selectively thiophene ring fragmentation
reaction via a cheletropic elimination to give imidazoline-
substituted olefins (Scheme 1).8a,b,d In sharp contrast, however,
thiazoline-spiro-thiophenes selectively expand the thiazole ring to
yield thieno[2,3-b]pyrazines via the electrocyclization reaction. It
seems that the cleavage of C–S bond rather than that of a C–N
bond occurs.
Notes and references
1 (a) G. Hajos, Z. Riedl and G. Kollenz, Eur. J. Org. Chem., 2001, 3405;
(b) N. Vivona, S. Buseemi, V. Frenna and G. Gusmano, Adv.
Heterocycl. Chem., 1993, 56, 49.
2 (a) K. Sakai and H. Suemune, Stud. Nat. Prod. Chem., 1992, 10, 303; (b)
G. Kalaus, L. Leder, I. Greiner, M. Kajtar-Peredy, K. Vekey, L. Szabo
and C. Szantay, Tetrahedron, 2003, 59, 5661; (c) G. Kalaus, I. Vago,
I. Greiner, M. K. Peredy, J. Brlik, L. Szabo and C. Szantay, Nat. Prod.
Lett., 1995, 7, 197; (d) S. Inoue, K. Okada, H. Tanino and H. Kakoi,
Tetrahedron Lett., 1988, 29, 1547.
3 (a) Y. Cheng and L.-Q. Cheng, J. Org. Chem., 2007, 72, 2625; (b)
K. Harada, E. Kaji, K. Sasaki and S. Zen, Heterocycles, 1996, 42, 289;
(c) T. Ueda, S. Asai, K. Oiji, S.-I. Nagai, A. Nagatsu and J. Sakakibara,
J. Heterocycl. Chem., 1997, 34, 761; (d) A. Goel, F. V. Singh, A. Sharon
and P. R. Maulik, Synlett, 2005, 623; (e) N. Poje and M. Poje, Org.
Lett., 2003, 5, 4265.
4 H. Shimizu, M. Kanematsu, K. Hashimoto and K. Kobayashi,
Heterocycles, 2000, 52, 73.
5 (a) D. Enders, K. Breuer, J. Runsink and J. H. Teles, Liebigs Ann., 1996,
2019; (b) P. Imming, A. Ku¨mmell and G. Seitz, Heterocycles, 1993, 35,
299.
6 C. Ma, H. Ding, Y. Zhang and M. Bian, Angew. Chem., Int. Ed., 2006,
45, 7793.
The thieno[2,3-b]pyrazine ring system has been found in natural
products such as urothion and its derivatives,10 and in some
synthetic compounds with biological activities.11 For example,
thieno[2,3-b]pyrazine-2,3-diones are useful in treating central
nervous system ailments,11c and benzothieno[2,3-b]pyrazine is
active against both Gram positive and negative bacteria and
fungi.11a The known methods for the construction of the
thieno[2,3-b]pyrazine skeleton are all based on the annulation of
a functionalized pyrazine10d,12 or a thiophene derivative.13 No ring
transformation methodology has been reported so far in the
construction of a thieno[2,3-b]pyrazine ring system. To the best of
our knowledge, this is the first report of the preparation of
thieno[2,3-b]pyrazine derivatives using a ring transformation
method starting from neither a pyrazine nor a thiophene
compound.
7 (a) B. Cetinkaya, E. Cetinkaya, J. A. Chamizo, P. B. Hitchcock,
H. A. Jasim, H. Ku¨cu¨kbay and M. F. Lappert, J. Chem. Soc., Perkin
Trans. 1, 1998, 2047; (b) H. E. Winberg and D. D. Coffman, J. Am.
Chem. Soc., 1965, 87, 2776; (c) M. Regitz, J. Hocker, W. Scho¨ssler,
B. Weber and A. Liedhegener, Justus Liebigs Ann. Chem., 1971, 748, 1;
(d) H. J. Schoenherr and H. W. Wanzlick, Chem. Ber., 1970, 103, 1037;
(e) A. Takamizawa, K. Hirai and S. Matsumoto, Tetrahedron Lett.,
1968, 4027; (f) A. Takamizawa, S. Matsumoto and S. Sakai, Chem.
Pharm. Bull., 1974, 22, 293.
8 (a) M.-F. Liu, B. Wang and Y. Cheng, Chem. Commun., 2006, 1215; (b)
Y. Cheng, M.-F. Liu, D.-C. Fang and X.-M. Lei, Chem.–Eur. J., 2007,
13, 4282; (c) J.-Q. Li, R.-Z. Liao, W.-J. Ding and Y. Cheng, J. Org.
Chem., 2007, 72, 6266; (d) Q. Zhu, M.-F. Liu, B. Wang and Y. Cheng,
Org. Biomol. Chem., 2007, 5, 1282.
9 Crystal data for 9b: C27H29N3O10S2, M = 619.65, T = 113 K,
monoclinic, space group P21/n, a = 15.1455(12), b = 12.530(1), c =
3
23
˚
˚
15.4095(12) A, b = 92.180(5)u, V = 2922(4) A , Z = 4, Dc = 1.408 g cm
absorption coefficient 0.243 mm21, reflections collected/unique 36155/
6953 (Rint = 0.0527), final R indices [I . 2s(I)]: R1 = 0.0496, wR2
,
=
In conclusion, we have shown that the interaction of
2-thiocarbamoyl thiazolium inner salts with DMAD proceeded
via a tandem [3 + 2] cycloaddition/ring-expansion process to
produce thieno[2,3-b]pyrazine derivatives in good to excellent
yields. A unique ring transformation reaction from thiazoline-
spiro-thiophene to thieno[2,3-b]pyrazine was unveiled. The easy
availability of 2-thiocarbamoyl thiazolium salts and their high
efficiency in the reaction with DMAD render this reaction a
powerful and unique ring-transformation methodology for the
construction of polyfunctional thieno[2,3-b]pyrazine derivatives
that are not readily accessible by other methods. This work
revealed that the N-heterocyclic carbene-derived ambident 1,3-
dipoles are remarkable intermediates not only in synthesis of spiro
heterocycles but also fused heterocyclic compounds.
0.1100. CCDC 656512. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b712098b.
10 (a) W. Koshara, Z. Phys. Chem., 1940, 263, 78; (b) R. Tschesche and
G. Heuschkel, Chem. Ber., 1956, 89, 1054; (c) M. Goto, A. Sakurai,
K. Ohta and H. Yamakami, Tetrahedron Lett., 1967, 4507; (d)
E. C. Taylor and L. A. Reiter, J. Am. Chem. Soc., 1989, 111, 285.
11 (a) O. S. Moustafa and Y. A. El-Ossaily, J. Chin. Chem. Soc. (Taipei),
2002, 49, 107; (b) P. P. Ehrlich, J. W. Ralston, J. F. Daanen and
M. D. Meyer, Int. Pat., WO 9957122, 1999; (c) A. S. Joergensen,
P. Faarup, E. Guddal and L. Jeppesen, Int. Pat., WO 9308197, 1993; (d)
M. Belema, A. Bunker, V. Nguyen, F. Beaulieu, C. Ouellet, A. Marinier,
S. Roy, X. Yang, Y. Qiu, Y. Zhang, A. Martel and C. Zusi, Int. Pat.,
WO 2003084959, 2003.
12 (a) J. Bourguignon, M. Lemarchand and G. Quequiner, J. Heterocycl.
Chem., 1980, 17, 257; (b) D. Pancechowska-Ksepko, J. Sawlewicz,
J. Samulska and M. Janowiec, Acta Pol. Pharmaceut., 1979, 36, 289; (c)
E. C. Taylor and L. A. Reiter, J. Org. Chem., 1982, 47, 528; (d) A. F. El-
Farargy, M. G. Assy and M. M. Hassanien, Pharmazie, 1993, 48, 109.
13 (a) T. Erker and K. Trinkl, Heterocycles, 2001, 55, 1963; (b) T. Erker
and K. Trinkl, Heterocycles, 2002, 57, 97; (c) D. Binder, C. R. Noe,
F. Geissler and F. Hillebrand, Arch. Pharm. (Weinheim, Ger.), 1981,
314, 564.
This work was supported by the National Natural Science
Foundation of China for Distinguished Young Scholars (No.
20525207) and National Natural Science Foundation of China
(20672013).
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 5087–5089 | 5089