Communications
tively to afford the expected hydroxy compound (a isomer,
71% yield) which was oxidized to the corresponding ketone
in 95% yield through the action of DMP. Heating this
compound with TsOH in MeOH at 508C for 48 h resulted in
the formation of pentacyclic trihydroxy methyl acetal 35,
through removal of the PMB and TES groups and ring
closure, in 85% yield. The methoxy group was then reduc-
tively removed from 35 by the action of Et3SiH in the
presence of TMSOTf in MeCN at 08C to afford, after
hydrogenolysis of the three benzyl groups (H2, 20% Pd(OH)2/
C (cat.), EtOH, 69% overall yield), the targeted GHIJK ring
system 2 (see the Experimental Section).[19]
The much-anticipated comparison of the 13C chemical
shifts of the GHIJK ring system 2 with those of the
corresponding region of maitotoxin (1)[2d] was then made
(Figure 1). As shown, the 13C NMR chemical shifts (ppm) for
the two compounds are in excellent agreement, with an
average difference (Dd/ppm) of less than 0.1 ppm and a
maximum deviation of 0.6 ppm for carbon atoms C-42 to C-
53. The larger differences between the values of the two
compounds for carbon atoms C-39 to C-41 and C-54 to C-55
are apparently due to the special functional groups present on
rings G (a sulfate moiety) and K (a dihydroxypyran) of
maitotoxin (1) as compared to the simpler model system 2
which contains only free hydroxy groups on ring G and a
cyclohexyl moiety on ring K (Figure 1). These observations
lend strong support for our computationally derived conclu-
sion[5] that the originally proposed structure[2–4] for maitotoxin
(1) is, indeed, most likely correct, at least in this region of the
molecule, despite the noted biosynthetic anomaly.[6]
Scheme 5. Construction of IJK ring system 33. Reagents and condi-
tions: a) nBuLi (2.0 equiv), 27 (2.0 equiv), THF, À788C, 1 h; then 26
(1.0 equiv), 15 min, 93%; b) DMP (1.5 equiv), CH2Cl2, 258C, 1 h, 96%;
c)48% aq HF/MeCN (1:3), 25 8C, 18 h, 94%; d)AgOTf (0.1 equiv),
CH2Cl2, 408C, 18 h, 89%; e)CeCl 3·7H2O (0.2 equiv), NaBH4
(1.1 equiv), MeOH/CH2Cl2 (1:1), 08C, 15 min; f)BH 3·THF (1.0m in
THF, 10 equiv), THF, 08C, 3 h; then NaOH (1.0m aq), H2O2 (35% aq),
1 h, 71% over two steps; g)TESOTf (15 equiv), 2,6-lut. (20 equiv),
CH2Cl2, 08C, 2 h, 92%; h)DIBAL-H (1.0 m in CH2Cl2, 10 equiv),
CH2Cl2, À788C, 10 min; i)TEMPO (0.1 equiv), PhI(OAc) (3.0 equiv),
2
CH2Cl2, 258C, 18 h, 82% over two steps; j) 32 (2.0 equiv), KHMDS
(0.5m in THF, 2.0 equiv), THF, À788C, 10 min, 93%. DMP=Dess–
Martin periodinane, DIBAL-H=diisobutylaluminum hydride,
TEMPO=2,2,6,6-tetramethyl-1-piperidinyloxy, KHMDS=potassium
bis(trimethylsilyl)amide.
The described chemistry provides further experimental
support for the originally proposed stereochemical assign-
ment for the JK junction of maitotoxin, and should facilitate
the construction of larger fragments
of this notable marine neurotoxin.
Experimental Section
2: Rf = 0.27 (silica gel, EtOAc/MeOH
4:1); [a]2D5 = À5.7 degcm3 gÀ1 dmÀ1 (c =
0.11 gcmÀ3, MeOH); IR (film): n˜max
=
3453, 3414, 2925, 2850, 1648, 1446,
1350, 1069 cmÀ1 1H NMR (600 MHz,
;
[D4]MeOD/[D5]pyridine): d = 4.30 (t,
J = 2.4 Hz, 1H), 4.22 (t, J = 4.8 Hz,
1H), 3.92 (dt, J = 9.0, 3.0 Hz, 1H), 3.88
(dd, J = 10.8, 8.4 Hz, 1H), 3.88–3.82 (m,
2H), 3.81–3.77 (m, 2H), 3.74 (t, J =
8.4 Hz, 1H), 3.74–3.70 (m, 1H), 3.61
(dd, J = 10.8, 4.8 Hz, 1H), 3.55 (t, J =
9.6 Hz, 1H), 3.43 (dd, J = 9.6, 3.0 Hz,
1H), 3.25 (dd, J = 9.6, 1.8 Hz, 1H), 3.16–
3.08 (m, 3H), 2.40 (dt, J = 10.8, 3.6 Hz,
1H), 2.35 (dt, J = 10.8, 4.2 Hz, 1H),
2.33–2.27 (m, 1H), 1.93–1.87 (m, 1H),
1.75 (ddt, J = 14.4, 8.4, 6.0 Hz, 1H),
1.68–1.63 (m, 1H), 1.63–1.53 (m, 3H),
Scheme 6. Completion of the synthesis of GHIJK ring system 2. Reagents and conditions: a) 13
(2.0 equiv), 9-BBN (4.0 equiv), THF, 508C, 3 h; then KHCO3 (1.0m aq, 20 equiv), 33 (1.0 equiv),
SPhos (0.2 equiv), Pd(OAc)2 (0.1 equiv), 258C, 48 h, 78%; b)BH 3·THF (1.0m in THF, 10 equiv),
THF, 08C, 18 h; then NaOH (1.0m aq), H2O2 (35% aq), 1 h, 71%; c) DMP (1.5 equiv), CH2Cl2, 258C,
2 h, 95%; d)TsOH (1.0 equiv), MeOH, 50 8C, 48 h, 85%; e)Et 3SiH (5.0 equiv), TMSOTf (2.0 equiv),
MeCN, 08C, 15 min, 98%; f)H 2, 20% Pd(OH)2/C (25% w/w), EtOH, 258C, 18 h, 70%. 9-BBN=9-
borabicyclo[3.3.1]nonane, SPhos=2-dicyclohexylphosphino-2’,6’-dimethoxybiphenyl, Ts=p-toluenesul-
fonyl.
1.52–1.44 (m, 3H), 1.31 (dq, J = 12.6,
3.0 Hz, 1H), 1.21–1.11 (m, 2H), 1.09–
ligand (cat.),[18] and KHCO3 (1.0m aq, 20 equiv) to afford
tetracycle 34 in 78% yield. The hydroboration of 34 with
BH3·THF in THF at 08C proceeded regio- and stereoselec-
1.01 (m, 1H), 0.98–0.90 ppm (m, 1H); 13C NMR (150 MHz, CDCl3):
d = 85.8, 85.0, 81.2, 79.3, 77.8, 77.5, 74.9, 74.5, 73.2, 72.1, 71.3, 70.3,
70.1, 69.8, 67.7, 59.6, 38.7, 37.7, 36.6, 36.3, 31.4, 27.7, 27.31, 27.26,
8878
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 8875 –8879
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Take advantage of blue reference links
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&