4 N. Burford and P. J. Ragogna, J. Chem. Soc., Dalton Trans., 2002,
4307; B. D. Ellis and C. L. B. Macdonald, Coord. Chem. Rev., 2007,
251, 936.
5 N. Burford, P. Losier, A. D. Phillips, P. J. Ragogna and T. S. Cameron,
Inorg. Chem., 2003, 42, 1087; N. Burford, H. A. Spinney, M. J. Ferguson
and R. McDonald, Chem. Commun., 2004, 2696; E. Rivard, K. Huynh,
A. J. Lough and I. Manners, J. Am. Chem. Soc., 2004, 126, 2286;
N. Burford, A. D. Phillips, H. A. Spinney, M. Lumsden, U. Werner-
Zwanziger, M. J. Ferguson and R. McDonald, J. Am. Chem. Soc.,
2005, 127, 3921.
6 C. A. Dyker, N. Burford, M. D. Lumsden and A. Decken, J. Am.
Chem. Soc., 2006, 128, 9632; N. Burford, T. S. Cameron, J. A. C.
Clyburne, K. Eichele, K. N. Robertson, S. Sereda, R. E. Wasylishen
and W. A. Whitla, Inorg. Chem., 1996, 35, 5460; K. Huynh, A. J. Lough
and I. Manners, J. Am. Chem. Soc., 2006, 128, 14002; N. Burford,
P. J. Ragogna, R. McDonald and M. J. Ferguson, J. Am. Chem. Soc.,
2003, 125, 14404.
˚
0.009 A (N4–C9–N5). These metrical parameters demonstrate
the high degree of flexibility within the dionio-substituted
phosphane 2, regarding both conformational changes within the
eight-membered heterocycle and, perhaps more importantly,
with respect to the distribution of electron density within the
guanidyl units.
Further studies on the coordinating ability of this and other
related onio- and dionio-substituted phosphanes are underway in
our laboratory. We wish to acknowledge the University of Sussex
for financial support and Prof. J. F. Nixon for helpful discussion
and the loan of [PtCl(PEt3)(m-Cl)]2.
Notes and references
7 D. Gudat, Coord. Chem. Rev., 1997, 163, 71.
8 N. Burford, P. Losier, S. V. Sereda, T. S. Cameron and G. Wu, J. Am.
Chem. Soc., 1994, 116, 6474.
9 R. Weiss and S. Engel, Synthesis, 1991, 1077; R. Weiss and S. Engel,
Angew. Chem., Int. Ed. Engl., 1992, 31, 216.
10 S. H. Oakley, M. P. Coles and P. B. Hitchcock, Inorg. Chem., 2004, 43,
7564; S. H. Oakley, M. P. Coles and P. B. Hitchcock, Dalton Trans.,
2004, 1113; M. P. Coles, Dalton Trans., 2006, 985.
{ Selected analytical data: 2, elemental analysis calcd (%) for
C22H33Cl4N6P: C 47.67, H 6.00, N 15.16; found: C 47.90, H 6.30, N
14.86. 31P NMR (CD3CN, 121.4 MHz, 298 K): d 120.4 (major), 110.7
(minor). 1H NMR (CD3CN, 300.1 MHz, 298 K, coupling constants in Hz):
3
d 7.65 (m, 2H, o-C6H5), 7.54 (m, 2H, m-C6H5), 7.17 (t, JHH 6.8, 1H,
p-C6H5), 5.67 (d, 2JHH 15.7, 1H, H2C{hpp}2 major), 5.46 (s, 2H, CH2Cl2),
4.88 (d, 2JHH 24.5, H2C{hpp}2 minor), 4.64 (d, 2JHH 15.7, 1H, H2C{hpp}2
major), 4.58 (d, JHH 24.3, H2C{hpp}2 minor), 3.94 (m, 6H, hpp-CH2),
2
11 P. J. Arago´n Sa´ez, S. H. Oakley, M. P. Coles and P. B. Hitchcock,
Chem. Commun., 2007, 816.
3.47 (m, 8H, hpp-CH2), 2.74 (m, 2H, hpp-CH2), 2.23–1.77 (m, 8H, hpp-
CH2). 13C NMR (CD3CN, 75.5 MHz, 298 K, coupling constants in Hz): d
159.8 (d, JPC 13, CN3), 133.9 (d, JPC 14, C6H5), 131.6 (d, JPC 2, C6H5),
12 Analysis of the dicationic component [H2C{hpp}2PPh]2+ computation-
ally, by means of geometry optimizations at a B3LYP/6-31+G** level of
theory, have identified several minima in the potential hypersurface.
Two stable conformations have been identified as corresponding to
approximate ‘chair’ and ‘twist-boat’: M. P. Coles and G. Estiu,
unpublished results. Furthermore, variable temperature NMR studies
indicate a shift in the relative integrals of the two species upon heating
[25 uC, major : minor 5 6.6 : 1; 50 uC, major : minor 5 4.2 : 1] consistent
with a shift in the position of the equilibrium between the two
conformations.
2
130.9 (d, JPC 3, C6H5), 128.9 (d, JPC 18, C6H5), 72.5 (H2C{hpp}2), 55.2
(CH2Cl2), 50.5 (d, JPC 47, hpp-CH2), 49.2, 48.8, 47.5 (hpp-CH2), 23.7 (d,
JPC 3, hpp-CH2), 21.7 (hpp-CH2). 3, 31P NMR (CD3CN, 121.4 MHz,
2
1
298 K, coupling constants in Hz): d 101.8 (d, JPP 5 570, JPtP 5 2950,
2
1
P{hpp}2Ph), 15.9 (d, JPP 5 570, JPtP 5 2530) PEt3. 4, 31P NMR
(CD3CN, 121.4 MHz, 298 K, coupling constants in Hz): d 72.5
(1JPtP 5 4877, P{hpp}2Ph). 1H NMR (CD3CN, 300.1 MHz, 298 K,
3
3
coupling constants in Hz): d 8.61 (dd, JPH 5 14.7, JHH 5 7.4, 2H,
o-C6H5), 7.83 (m, 1H, p-C6H5), 7.73 (m, 2H, m-C6H5), 7.05 (d, 2JHH 15.7,
1H, H2C{hpp}2), 4.66 (d, 2JHH 15.7, 1H, H2C{hpp}2), 3.70–3.27 (m, 14H,
hpp-CH2), 2.21–1.91 (m, 10H, hpp-CH2).
´ ˆ ´
13 Z. B. Maksic and B. Kovacevic, J. Chem. Soc., Perkin Trans. 2, 1999,
2623.
{ Crystallographic data: 2, C21H31Cl2N6P?CH2Cl2, Mr 5 554.31, crystal
dimensions 0.40 6 0.40 6 0.40 mm, orthorhombic, space group
14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin,
J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,
S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision C.02), Gaussian, Inc., Wallingford, CT, 2004. The
input coordinates were taken from the X-ray data and the true
energy minimum was confirmed by the absence of any imaginary
frequencies.
˚
Pna21 (No. 33), a 5 13.5675(3), b 5 15.3805(2), c 5 12.3987(3) A, V 5
3
2587.30(9) A , Z 5 4, rcalcd 5 1.42 Mg m23, m 5 0.54 mm21; of 25557
˚
reflections collected (3.42 , h , 26.01u), 5042 were independent
(Rint 5 0.047), R1 5 0.028, wR2 5 0.080 (data for 4845 reflections with
I
. 2s(I)), R1 5 0.030, wR2 5 0.082 (all data). 4,
C21H31Cl4N6PPt?C2H3N, Mr 5 776.43, crystal dimensions 0.15 6
0.10 6 0.10 mm, monoclinic, space group P21/c (No. 14), a 5 14.0180(5),
3
˚
˚
b 5 14.4145(4), c 5 15.2158(5) A, V 5 2811.39(16) A , Z 5 4, rcalcd
5
1.83 Mg m23, m 5 5.46 mm21; of 38517 reflections collected (3.48 , h ,
26.04u), 5528 were independent (Rint 5 0.077), R1 5 0.044, wR2 5 0.107
(data for 4763 reflections with I . 2s(I)), R1 5 0.055, wR2 5 0.112 (all
data). CCDC 644406 and 644407. For crystallographic data in CIF format,
see DOI: 10.1039/b710923g
1 A. H. Cowley and R. A. Kemp, Chem. Rev., 1985, 85, 367.
2 R. Reed, R. Re´au, F. Dahan and G. Bertrand, Angew. Chem., Int. Ed.
Engl., 1993, 32, 399.
3 G. Bouhadir, R. W. Reed, R. Re´au and G. Bertrand, Heteroat. Chem.,
1995, 6, 371.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 5229–5231 | 5231