Allenynes are very interesting substrates because of their
high degree of unsaturation.9 Thus, they have been used as
substrates in various catalytic reactions, including cycloi-
somerization,10 [2 + 2] cycloaddition reaction,11 ring-closing
metathesis,12 Pauson-Khand reactions,13 and ene-type reac-
tions.14 Recently, we found that there has been no example
of palladium-catalyzed decarboxylation that involves buta-
2,3-dienyl 2′-alkynoates. Furthermore, if we control the
decarboxylation reaction, 2-alkynyl buta-1,3-dienes instead
of allenynes would be obtained. Recently, Shi reported15 the
synthesis of 2-alkynyl buta-1,3-dienes by the reaction of the
corresponding diiodides from methylenecyclopropanes with
substituted alkynes via Sonogashira coupling in the presence
of Pd(PPh3)4/CuI catalysis. Formation of 2-alkynyl buta-1,3-
dienes by the reaction of cross-metathesis of 1,3-diynes with
an olefin was also reported by Lee.16 2-Ethynyl buta-1,3-
diene has been used as the diene component in Diels-Alder
addition reactions.17 Recently, π-conjugated polymers have
been widely explored as advanced materials for electronic
and photonic applications.18 Many chromophores have
2-phenylethynyl buta-1,3-diene as a substructure.19 Herein
we report a new approach to conjugated dienynes that relies
upon the palladium-catalyzed decarboxylation of allenyl
alkynoates.
Decarboxylation was studied using 4-methylpenta-2,3-
dienyl 3-phenylpropiolate (1a) as a model substrate and Pd2-
(dba)3 as a catalyst in toluene at 75 °C (eq 1). After 2 h of
reaction time, 2-phenylethynyl buta-1,3-diene (1b) was
obtained in 43% yield.
Thus, we initially screened the reaction parameters, such
as the palladium catalyst, the reaction solvent, the reaction
temperature, and the reaction time, for the decarboxylation
of 1a (Table 1).
Table 1. Pd-Catalyzed Decarboxylation of 1aa
(6) (a) Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2006, 71,
6991-6995. (b) Bourgeois, D.; Craig, D.; Grellepois, F.; Mountford, D.
M.; Stewart, A. J. W. Tetrahedron 2006, 62, 483-495. (c) Craig, D.;
Grellepois, F. Org. Lett. 2005, 7, 463-465.
(7) (a) Goossen, L. J.; Rodriguez, N.; Melzer, B.; Linder, C.; Deng, G.;
Levy, L. M. J. Am. Chem. Soc. 2007, 129, 4824-4833. (b) Olivier, B.
Angew. Chem., Int. Ed. 2007, 46, 1373-1375. (c) Becht, J.-M.; Catala, C.;
Le Drian, C.; Wagner, A. Org. Lett. 2007, 9, 1781-1783. (d) Goossen, L.
J.; Melzer, B. J. Org. Chem. 2007, 72, 7473-7476.
(8) (a) Mohr, J. T.; Nishimata, T.; Behenna, D. C.; Stoltz, B. M. J. Am.
Chem. Soc. 2006, 128, 11348-11349. (b) Matsubara, S.; Yokota, Y.;
Oshima, K. Org. Lett. 2007, 9, 2071-2073. (c) Olivier, R.; Abdelkhalek,
R.; Franc¸oise, H.; Jacques, M. Eur. J. Org. Chem. 2002, 3986-3994.
(9) (a) Hashmi, A. S. K. In Modern Allene Chemistry; Krause, N.,
Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 877-
923. (b) Brummond, K. M.; Chen, H. In Modern Allene; Krause, N., Hashmi,
A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 1041-1089.
(c) Ma, S. Chem. ReV. 2005, 105, 2829-2872.
T (°C)
yield
(%)b
entry
catalyst
solvent [t (h)]
1
2
2.5 mol % of Pd2(dba)3
2.5 mol % of Pd2(dba)3/dppe(1:1)
5 mol % of Pd(PPh3)4
toluene 75 [2]
43
toluene 75 [0.5] >99
toluene 75 [0.5] >99
toluene 75 [0.5] 99
toluene 25 [24] n.r.c
toluene 45 [24] 34 (37)
3
4
1 mol % of Pd(PPh3)4
5
1 mol % of Pd(PPh3)4
6
1 mol % of Pd(PPh3)4
7
1 mol % of Pd(PPh3)4
THF
DCE
75 [24] 12 (74)
75 [24] 47 (50)
toluene 75 [6]
8
1 mol % of Pd(PPh3)4
9
1 mol % of Pd(OAc)2/PPh3 (1:1)
67
10
1 mol % of [C3H5]PdCl-NHC(Ipr) toluene 75 [24] n.r.
a 1a (0.12 g, 0.54 mmol) in 5 mL of solvent was used. b Isolated yield.
c n.r. ) no reaction.
(10) (a) Lemiere, G.; Gandon, V.; Agenet, N.; Goddard, J.-P.; de Kozak,
A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2006,
45, 7596-7599. (b) Murakami, M.; Kadowaki, S.; Matsuda, T. Org. Lett.
2005, 7, 3953-3956. (c) Lee, S. I.; Sim, S. H.; Kim, S. M.; Kim, K.; Chung,
Y. K. J. Org. Chem. 2006, 71, 7120-7123. (d) Matsuda, T.; Kadowaki,
S.; Goya, T.; Murakami, M. Synlett 2006, 575-578. (e) Cardran, N.; Cariou,
K.; Herve, G.; Aubert, C.; Fensterbank, L.; Malacria, M.; Marco-Contelles,
J. J. Am. Chem. Soc. 2004, 126, 3408-3409. (f) Jiang, X.; Ma, S. J. Am.
Chem. Soc. 2006, 129, 11600-11607. (g) Jiang, X.; Ma, S. J. Am. Chem.
Soc. 2007, 129, 11600-11607.
An addition of dppe to Pd2(dba)3 slightly increased the
catalytic activity (entry 2). However, as Table 1 shows, Pd-
(PPh3)4 was the best catalyst of those examined. The loading
of the catalyst can be lowered to 1 mol % with a quantitative
yield (entry 4). When the solvent and the reaction temper-
ature were screened using Pd(PPh3)4 as a catalyst (entries
4-8), the best yield (>99%) was obtained in toluene at
75 °C for 0.5 h (entry 4). The Pd(OAc)2/PPh3 (1:1) system
shows a slightly lower activity (entry 9). Complex (π-C3H5)-
Pd(IPr)Cl (IPr ) N,N′-bis(2,6-diisopropylphenyl)imidazol-
(11) (a) Mukai, C.; Hara, Y.; Miyashita, Y.; Inagaki, F. J. Org. Chem.
2007, 72, 4454-4461. (b) Ohno, H.; Mizutani, T.; Kadoh, Y.; Aso, A.;
Miyamura, K.; Fujii, N.; Tanaka, T. J. Org. Chem. 2007, 72, 4378-4389.
(c) Oh, C. H.; Gupta, A. K.; Park, D. I.; Kim, N. Chem. Commun. 2005,
5670-5672. (d) Ohno, H.; Mizutani, T.; Kadoh, Y.; Miyamura, K.; Tanaka,
T. Angew. Chem., Int. Ed. 2005, 44, 5113-5115. (e) Alcaide, B.; Almendros,
P.; Aragoncillo, C. Org. Lett. 2003, 5, 3795-3798. (f) Jiang, X.; Ma, S.
Tetrahedron 2007, 63, 7589-7595.
(18) (a) Kros, A.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. AdV. Mater.
2002, 14, 1779-1782. (b) Carroll, R. L.; Gorman, C. B. Angew. Chem.,
Int. Ed. 2002, 41, 4378-4400. (c) McQuade, D. T.; Pullen, A. E.; Swager,
T. M. Chem. ReV. 2000, 100, 2537-2574. (d) Tour, J. M. Acc. Chem. Res.
2000, 33, 791-804. (e) Liphardt, M.; Goonesekera, A.; Jones, B. E.;
Ducharme, S.; Takacs, J. M.; Zhang, L. Science 1994, 263, 367-369. (f)
Miller, J. S. AdV. Mater. 1993, 5, 671-676. (g) Greenham, N. C.; Moratti,
S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature 1993, 365,
628-630. (h) Buckley, A. AdV. Mater. 1992, 4, 153-158. (i) Nalwa, H. S.
AdV. Mater. 1993, 5, 341-358.
(19) (a) Michinobu, T.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Frank,
B.; Moonen, N. N. P.; Gross, M.; Diederich, F. Chem.sEur. J. 2006, 12,
1889-1905. (b) Pahadi, N. K.; Camacho, D. H.; Nakamura, I.; Yamamoto,
Y. J. Org. Chem. 2006, 71, 1152-1155. (c) Michinobu, T.; May, J. C.;
Lim, J. H.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Gross, M.; Biaggio,
I.; Diederich, F. Chem. Commun. 2005, 737-739.
(12) Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S. Tetrahedron Lett.
2004, 45, 4117-4121.
(13) (a) Shibata, T.; Kadowaki, S.; Hirase, M.; Takagi, K. Synlett 2003,
573-575. (b) Mukai, C.; Inagaki, F.; Yoshida, T.; Yoshitani, K.; Hara, Y.;
Kitagaki, S. J. Org. Chem. 2005, 70, 7159-7171. (c) Mukai, C.; Hirose,
T.; Teramoto, S.; Kitagaki, S. Tetrahedron 2005, 61, 10983-10994. (d)
Park, J. H.; Kim, S. Y.; Kim, S. M.; Lee, S. I.; Chung, Y. K. Synlett 2007,
453-459.
(14) Shibata, T.; Takesue, Y.; Kadowaki, S.; Takagi, K. Synlett 2003,
268-270.
(15) Shao, L.-X.; Shi, M. J. Org. Chem. 2005, 70, 8635-8637.
(16) Kim, M.; Miller, R. L.; Lee, D. J. Am. Chem. Soc. 2005, 127,
12818-12819.
(17) Hopf, H.; Jager, H.; Ernst, L. Liebigs Ann. 1996, 815-824.
434
Org. Lett., Vol. 10, No. 3, 2008