Unusual MgCl2-Catalyzed Non-Evans anti-Aldol Reactions
[2] a) A. Berkessel, H. Groger in Asymmetric Organocatalysis:
From Biomimetic Concepts to Applications in Asymmetric Syn-
thesis, Wiley-VCH, Weinheim, 2005; b) B. List in Modern Aldol
Reactions, Wiley-VCH, Weinheim, 2004, vol. 1, ch. 4.
[3] D. A. Evans, J. A. Bartoli, T. L. Shih, J. Am. Chem. Soc. 1981,
103, 2127–2129.
[4] a) A. Abiko, Acc. Chem. Res. 2004, 37, 387–395; b) A. Abiko,
J. F. Liu, S. Masamune, J. Am. Chem. Soc. 1997, 119, 2586–
2587.
[5] S. Fanjul, A. N. Hulme, J. W. White, Org. Lett. 2006, 8, 4219–
4222.
[6] a) D. A. Evans, J. S. Tedrow, J. T. Shaw, C. W. Downey, J. Am.
Chem. Soc. 2002, 124, 392–393; b) D. A. Evans, C. W. Downey,
J. T. Shaw, J. S. Tedrow, Org. Lett. 2002, 4, 1127–1130. For re-
lated syn-selective aldol reactions, see: c) M. T. Crimmins, B. W.
King, E. A. Tabet, K. Chaudhary, J. Org. Chem. 2001, 66, 894–
902; d) D. A. Evans, C. W. Downey, J. L. Hubbs, J. Am. Chem.
Soc. 2003, 125, 8706–8707.
[7] Magnesium halide catalyzed Mukaiyama-type anti-selective al-
dol reactions have previously been reported, see: a) E. J. Corey,
W. Li, G. A. Reichard, J. Am. Chem. Soc. 1998, 120, 2330–
2336; b) W. Li, X. Zhang, Org. Lett. 2002, 4, 3485–3488.
[8] a) A. M. McLachlan, N. Kekre, J. McNulty, S. Pandey,
Apoptosis 2005, 10, 619–630; b) S. Pandey, N. Kekre, J.
McNulty, J. Naderi, Cancer Chemother. Pharmacol. 2005, 56,
29–38; c) S. Pandey, N. Kekre, J. McNulty, J. Naderi, Art. Cells,
Blood Sub. & Biotechnol. 2005, 33, 279–295.
Figure 3. X-ray structure of 20a.
[9] a) J. McNulty, V. Larichev, S. Pandey, Bioorg. Med. Chem. Lett.
2005, 15, 5315–5318; b) G. R. Pettit, N. Melody, D. L. Herald,
J. Nat. Prod. 2004, 67, 322–327; c) U. Rinner, T. Hudlicky,
Synlett 2005, 365–387.
[10] a) D. Ivanoff, A. Spassoff, Bull. Soc. Chim. Fr. 1931, 49, 371–
375; b) M. Braun in Modern Aldol Reactions, Wiley-VCH,
Weinheim, 2004, vol. 1, ch. 1.
[11] For select reports on phenyl acetate derived auxiliaries, see: a)
M. P. Gore, J. C. Vederas, J. Org. Chem. 1986, 51, 3700–3704;
b) M. Prashad, H. Y. Kim, D. Har, O. Repic, T. J. Blacklock,
Tetrahedron Lett. 1998, 39, 9369–9372; c) S. J. Wittenberger,
M. A. McLaughlin, Tetrahedron Lett. 1999, 40, 7175–7178; d)
S. D. Bull, S. G. Davies, M. S. Key, R. L. Nicholson, E. D. Sa-
vory, Chem. Commun. 2000, 1721–1722.
Figure 4. X-ray structure of 23.
Conclusions
[12] a) A. Chattopadhyay, B. Dhotare, Tetrahedron: Asymmetry
1998, 9, 2715–2723; b) M. Majewski, J. Shao, K. Nelson, P.
Nowak, N. M. Irvine, Tetrahedron Lett. 1998, 39, 6787–6790;
c) T. Wong, P. D. Wilson, S. Woo, A. G. Fallis, Tetrahedron
Lett. 1997, 38, 7045–7048; d) T. Mukaiyama, K. Suzuki, T.
Yomada, F. Tabusa, Tetrahedron 1990, 46, 265–276; e) J.
Mulzer, A. Angermann, Tetrahedron Lett. 1983, 24, 2843–2846.
[13] See ref.[6a] footnote 13. A series of aliphatic and α-substituted
aldehydes (such as 2-benzyloxyacetaldehyde, Garner aldehyde)
did not provide any identifiable crossed-aldol adduct. The use
of other solvents (EtOAc, THF, DCM, PhMe), bases, silylating
agents TMSCl, TMSOTf, (TMS)2O, etc.], metal salts [MgCl2,
MgBr2, MgI2, Mg(OTf)2, Yb(OTf)3, etc.], modifications to the
order of reagent addition or slow addition of aldehyde, and so
on also failed to promote the reaction in other cases.
[14] a) J. W. Cornforth, R. H. Cornforth, K. K. Matthew, J. Chem.
Soc. 1959, 112–127; b) D. J. Cram, D. R. Wilson, J. Am. Chem.
Soc. 1963, 85, 1245–1249; c) D. A. Evans, S. J. Siska, V. J. Cee,
Angew. Chem. Int. Ed. 2003, 42, 1761–1765; d) V. J. Cee, C. J.
Cramer, D. A. Evans, J. Am. Chem. Soc. 2006, 128, 2920–2930.
[15] CCDC-654288 (for 14), -654286 (for 20a), and -654287 (for 23)
contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The
Cambridge Crystallography Data Centre via www.ccdc.cam.
ac.uk/data_requestcif.html.
The magnesium halide catalyzed non-Evans anti-aldol
reaction of phenyl acetate derived oxazolidinones was ex-
tended to aromatic aldehydes and conformationally re-
strained aldehydes having hindered α-hydrogen atoms. Ap-
plication of this successful anti-aldol process towards the
synthesis of anticancer alkaloids and phenylpropanoids is
now in progress. Further work to explore the reactivity of
aldehydes such as 8 in this reaction with achiral enolates
under nonchelation conditions is also underway.
Supporting Information (see footnote on the first page of this arti-
cle): Full procedures and spectroscopic data, selected ORTEP and
packing diagrams.
Acknowledgments
We thank NSERC and the Lotte and John Hecht Memorial Foun-
dation for financial support.
[1] R. Mahrwald (Ed.), Modern Aldol Reactions, Wiley-VCH,
Weinheim, 2004, vols. 1, 2.
Received: September 11, 2007
Published Online: October 16, 2007
Eur. J. Org. Chem. 2007, 5669–5673
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5673