retrosynthetic analysis shown in Scheme 1. Although the Pro,
Tle, and the benzoic acid units are readily available starting
materials, preparation of aminotetrahydroethoxyfuranone 4
remains difficult and impractical due to its instability and
proclivity for undesired side reactions under amide bond-
forming conditions. As such, and in order to circumvent the
problems associated with 4, a new approach to VX-765 based
on the P1-P2 key intermediate 5 was developed via the
disconnections shown in Scheme 2. The process relies on
substrate and N,N,N′,N′-tetramethyl-1,2-diaminocyclohexane
as the ligand. In our case, the practicality and ease of
accessibility of 7 required a coupling method amenable to
(E)-3-bromoacrylates, substrates not conducive to Cu-cata-
lyzed conditions. Our initial investigations began with the
typical conditions used for Pd-catalyzed amide N-arylations
(eq 1). Under these conditions, Z-Pro-NH2 was coupled to
7 to give 5 and epi-5 in yields ranging from 58 to 78%,
capricious results at best. Control experiments showed the
irreproducibility arose from the instability of 7 under basic
conditions.
Scheme 2. Retrosynthesis of VX-765 via Pd-Catalyzed
Coupling
To solve the instability problem, a series of experiments
were conducted to determine the best base, solvent, temper-
ature, and precatalyst combination to effect the desired
coupling reaction. A rapid evaluation of solvents (nonpolar
and polar aprotic solvents) and bases showed 7 was stable
in the presence of K2CO3 or Cs2CO3 in toluene at 22-25
°C for 8 h and began to decompose (HPLC) at temperatures
of 45-50 °C. Next, we turned our attention to determining
the best ligand and palladium source for the coupling.
formation of the crucial C-N bond of 5 via coupling of the
amide Z-Pro-NH2 and bromoethoxyfuranone, a process that
has not been previously demonstrated. We present here a
novel target-oriented methodology for the synthesis of 5 via
development of a Pd-catalyzed N-acyl vinylogous carbamate
synthetic methodology.
The coupling of â-halo enoates with amides to generate
N-acyl vinylogous carbamates is a new process and has been
demonstrated previously by Porco using allyl (E)-3-iodoacryl-
ates and (E)-3-iodoacrylamides in the presence of 1-5 mol
% of CuI2.4-6 In this case, iodides were required as the
Table 1 shows the results from evaluating two practical
Table 1. Ligand Evaluation for Coupling in Equation 1a
(2) (a) Sleath, P. R.; Hendrickson, R. C.; Kronheim, S. R.; March, C. J.;
Black, R. A. J. Biol. Chem. 1990, 265, 14526. (b) Howard, A. D.; Kostura,
J. R.; Thornberry, N.; Ding, G. J.; Limjuco, G.; Weidner, J.; Salley, J. P.;
Hogquist, K. A.; Chaplin, D. D.; Mumford, R. A. J. Immunol. 1991, 147,
2964. (c) Black, R. A.; Kronheim, S. R.; Sleath, P. R. FEBS Lett. 1989,
386. (d) Kostura, M. J.; Tocci, M. J.; Limjuco, G.; Chin, J.; Cameron, P.;
Hillman, A. G.; Chartrain, N. A.; Schmidt, J. A. Proc. Natl. Acad. Sci.
U.S.A. 1989, 86, 5227. (e) Steller, H. Science 1995, 267, 1445.
(3) For leading references to VX-765, see: (a) Wannamaker, W.; Davies,
R.; Namchuk, M.; Pollard, J.; Ford, P.; Ku, G.; Decker, C.; Charifson, P.;
Weber, P.; Germann, U. A.; Keisuke, K.; Randle, J. C. R. J. Pharmacol.
Exp. Ther. 2007, 32, 509. (b) Stakc, J. H.; Beaumont, K.; Larsen, P. D.;
Straley, K. S.; Henkel, G. W.; Randle, J. C. R.; Hoffman, H. M. J. Immunol.
2005, 175, 2630. (c) Ravizza, T.; Lucas, S.-B.; Silvia, B.; Bernardino, L.;
Ku, G.; Noe, F.; Malva, J.; Randle, J. C. R.; Allan, S.; Vezzani, A. Epilepsia
2006, 47, 1160. For leading references to caspase inhibitors, see: (d)
Cornelis, S.; Kerrse, K.; Festiens, N.; Lamkanfi, M.; Vandenabeele, P. Curr.
Pharm. Des. 2007, 13, 367. (e) Linton, S. D. Curr. Top. Med. Chem. 2005,
5, 1697.
conversion (%)
entry
ligand
Xantphos
BINAP
DPEPhos
DPPB
DPPE
DPPF
Cy2P-biphenyl
t-Bu2P-biphenyl
Pd(OAc)2
Pd2(dba)3
1
2
3
4
5
6
7
8
>85
21
47
0.0
16
72
>85
23
72
7.2
7.4
70
9.8
8.5
30
42
a Conditions: 1.1 equiv of 7, 10 mol % of Pd source, 15 mol % of ligand,
Cs2CO3 (1.5 equiv), toluene, 60 °C, 2 h.
(4) (a) Han, C.; Shen, R.; Su, S.; Porco, J. A., Jr. Org. Lett. 2004, 6, 27.
Also see: (b) Buckler, R. T.; Hartzler, H. E. J. Med. Chem. 1975, 18, 509.
(c) Boger, D. L.; Wysocki, R. J., Jr. J. Org. Chem. 1989, 54, 714. (d)
Hosokawa, T.; Takano, M.; Kuroki, Y.; Murahashi, S. I. Tetrahedron Lett.
1992, 33, 6643. (e) Suh, E. M.; Kishi, Y. J. Am. Chem. Soc. 1994, 116,
11205.
(5) For related Cu-catalyzed coupling of amides, see: (a) Jiang, L.; Job,
G. E.; Kalpars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667. (b) Klapars,
A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421. (c)
Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2001, 123, 7727. (d) Shen, R.; Porco, J. A. Org. Lett. 2000, 2, 1333. (e)
Guo, X.; Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. AdV. Synth. Catal. 2006,
348, 2197. (f) Lee, J. M.; Ahn, D.-S.; Jung, D. Y.; Lee, J.; Do, Y.; Kim, S.
K.; Chang, S. J. Am. Chem. Soc. 2006, 128, 12954.
(6) Also see: (a) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809-
1812. (b) Hu, T.; Li, C. Org. Lett. 2005, 7, 2035-2038. (c) Willis, M. C.;
Brace, G. N.; Holmes, I. P. Synthesis 2005, 3229-3234. (d) Lee, J. M.;
Ahn, D.-S.; Jung, D. Y.; Lee, J. G.; Do, Y.; Kim, S. K.; Chang, S. J. Am.
Chem. Soc. 2006, 128, 12954. (e) Villa, M. V. J.; Targett, S. M.; Barnes,
J. C.; Whittingham, W. G.; Marquez, R. Org. Lett. 2007, 9, 1631.
palladium sources and several ligands. The reaction condi-
tions used high catalyst loadings (10 mol %) for rapid
coupling in order to minimize bromide decomposition. For
Pd(OAc)2, Xantphos, DPEPhos, and DPPF gave the best
conversions after 2 h at 60 °C (entries 1,3, and 6); Cy2P-
biphenyl and t-Bu2P-biphenyl gave less than 10% conversion
(entries 7 and 8), and BINAP gave only 21% conversion
(entry 2). Alkylidene diphenylphosphino ligands gave poor
results with DPPE and DPPB, providing 16 and 0%
conversion, respectively (entries 4 and 5). Replacing Pd-
(OAc)2 with Pd2dba3 gave comparable results: Xantphos,
DPEPhos, and DPPF were the best ligands (entries 1, 3, and
6). Interestingly, BINAP gave nearly identical results for
186
Org. Lett., Vol. 10, No. 2, 2008