As for the aldol reaction, Barbas’ group10 and ours11-13
independently developed asymmetric aldol reactions cata-
lyzed by organocatalysts in the presence of water. While
Barbas and co-workers used a diamine with a long alkyl
chain in the presence of acid, we employed siloxyproline11
and a combined proline-surfactant organocatalyst.12 Fol-
lowing these reports, several organocatalysts have been
developed for the enantioselective aldol reaction in the
presence of water,14 and recently, a threonine-derived orga-
nocatalyst was applied to the Mannich reaction in the
presence of water, in which only alkoxyacetone was inves-
tigated.15 During the application of siloxyproline to the
asymmetric Mannich reaction in the presence of water, we
found effective Mannich catalysts, affording adducts with
excellent enantioselectivity, which will be disclosed in this
communication.
First, the three-component Mannich reaction of dimethoxy-
acetaldehyde, p-anisidine, and cyclohexanone was selected
as a model. Dimethoxyacetaldehyde is commercially avail-
able as aqueous solution; therefore, this reaction must be
performed in the presence of water. Moreover, the Mannich
product obtained is a synthetically useful polyfunctionalized
compound. The reaction was performed as follows: Mixing
anisidine, an aqueous solution of aldehyde (60 wt %
solution), and water (total volume of water is 18 equiv) for
0.5 h in the presence of the catalyst generated an oily material
that separated from the water. To this mixture we added 2
equiv of ketone, and the reaction proceeded in a biphase
system. Organocatalysts (Figure 1) were screened, with the
(6) For our contributions in the Mannich reaction, see: (a) Hayashi, Y.;
Tsuboi, W.; Shoji, M.; Suzuki, N. J. Am. Chem. Soc. 2003, 125, 11208. (b)
Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K.
Angew. Chem., Int. Ed. 2003, 42, 3677. (c) Hayashi, Y.; Urushima, T.;
Shoji, M.; Uchimaru, T.; Shiina, I. AdV. Synth. Catal. 2005, 347, 1595. (d)
Hayashi, Y.; Urushima, T.; Shin, M.; Shoji, M. Tetrahedron 2005, 61,
11393. (e) Hayashi, Y.; Urushima, T.; Tsuboi, W.; Shoji, M. Nat. Protocols
2007, 2, 113.
Figure 1. The organocatalysts examined in this study.
(7) For recent selected papers of direct enantioselective Mannich
reactions, see: (a) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am.
Chem. Soc. 2006, 128, 2778. (b) Song, J.; Wang, Y.; Deng, L. J. Am. Chem.
Soc. 2006, 128, 6048. (c) Shibasaki, M.; Matsunaga, S. J. Organomet. Chem.
2006, 691, 2089. (d) Cordova, A. Acc. Chem. Res. 2004, 37, 102.
(8) For representative papers of Mannich reactions catalyzed by orga-
nocatalysis, see: (a) List, B. J. Am. Chem. Soc. 2000, 122, 9336. (b) List,
B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124,
827. (c) Cordova, A.; Notz, W.; Zhong, G.; Betancort, J. M.; Barbas, C.
F., III. J. Am. Chem. Soc. 2002, 124, 1842. (d) Cordova, A.; Watanabe, S.;
Tanaka, F.; Notz, W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124,
1866. (e) Cordova, A.; Barbas, C. F., III. Tetrahedron Lett. 2003, 44, 1923.
(f) Notz, W.; Tanaka, F.; Watanabe, S.; Chawdari, N. S.; Turner, J. M.;
Thayumanavan, R.; Barbas, C. F., III. J. Org. Chem. 2003, 68, 9624. (g)
Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004,
43, 1566. (h) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
(i) Westermann, B.; Neuhaus, C. Angew. Chem., Int. Ed. 2005, 44, 4077.
(j) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed.
2005, 44, 4079. (k) Kano, T.; Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J.
Am. Chem. Soc. 2005, 127, 16408. (l) Paulsen, T. B.; Alemparte, C.; Saaby,
S.; Bella, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 2896.
(m) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005,
127, 11256. (n) Mitsumori, S.; Zhang, H.; Cheong, P. H.; Houk, K. N.;
Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 1040. (o) Zhang,
H.; Mifsud, M.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006,
128, 9630. (p) Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F.,
III. J. Am. Chem. Soc. 2007, 129, 288. (q) Liu, T.-Y.; Cui, H.-L.; Long, J.;
Li, B.-J.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. J. Am. Chem. Soc. 2007, 129,
1878. (r) Yang, J. W.; Stadler, M.; List, B. Angew. Chem., Int. Ed. 2007,
46, 609. (s) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2007, 129,
10054 and the references cited therein.
(9) For reviews of organocatalysis, see: (a) Berkssel, A.; Groger, H.
Asymmetric Organocatalysis; Wiley-VCH: Weinheim, Germany, 2005. (b)
Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (c) Hayashi,
Y. J. Synth. Org. Chem. Jpn. 2005, 63, 464. (d) List, B. Chem. Commun.
2006, 819. (e) Marigo, M.; Jørgensen, K. A. Chem. Commun. 2006, 2001.
(f) Lelais, G.; MacMillan, D. W. C. Aldrichimica Acta 2006, 39, 79. (g)
Gaunt, M. J.; Johnsson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery
Today 2007, 12, 8. (h) EnantioselectiVe Organocatalysis; Dalko, P. I., Ed.;
Wiley-VCH: Weinheim, Germany, 2007.
(10) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.;
Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 734.
(11) (a) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima,
T.; Shoji, M. Angew. Chem., Int. Ed. 2006, 45, 958. (b) Aratake, S.; Itoh,
T.; Okano, T.; Nagae, N.; Sumiya, T.; Shoji, M.; Hayashi, Y. Chem.sEur.
J. 2007, DOI: 10.1002/chem.200700363.
results summarized in Table 1. Low yield and enantioselec-
tivity were obtained in the reactions with proline (1) and
4-hydroxyproline (2). Tetrazole catalyst 316 gave 50% ee,
and a moderate ee (72%) was observed with siloxyproline
4.11,17 Among other catalysts, siloxytetrazole hybrid catalyst
5 afforded the adduct not only in excellent yield but also
with very high enantioselectivity. By lowering the reaction
temperature, higher diastereoselectivity and enantioselectivity
were realized. As for the diastereoselectivity, although proline
(1) and siloxyproline 4 gave anti-isomer predominantly, syn-
isomer was obtained selectively when tetrazolesiloxy hybrid
catalyst 5 was employed. It should be noted that tetrazole
catalyst 3 and siloxyproline 4, both of which are active
catalysts in several transformations, are not suitable, but the
combination of a siloxy and tetrazole moiety in a pyrrolidine
scaffold created a highly efficient Mannich catalyst 5. The
reaction also proceeds in good yield with excellent enantio-
selectivity in the presence of a large excess (100 equiv) of
water (entry 7). Practically, the amount of water should be
reduced, and the reaction was found to proceed efficiently
without the additional amount of water.
The generality of the reaction was examined, with the
results summarized in Table 2. Both cyclohexanone and
(14) (a) Jiang, Z.; Liang, Z.; Wu, X.; Lu, Y. Chem. Commun. 2006, 2801.
(b) Wu, Y.; Zhang, Y.; Yu, M.; Zhao, G.; Wang, S. Org. Lett. 2006, 8,
4417. (c) Font, D.; Jimeno, C.; Pericas, M. A. Org. Lett. 2006, 8, 4653. (d)
Guillena, G.; Hita, M. C.; Najera, C. Tetrahedron: Asymmetry 2006, 17,
1493. (e) Wu, X.; Jiang, Z.; Shen, H.-M.; Lu, Y. AdV. Synth. Catal. 2007,
349, 812. (f) Maya, V.; Raj, M.; Singh, V. K. Org. Lett. 2007, 9, 2593.
(15) (a) Cheng, L.; Wu, X.; Lu, Y. Org. Biomol. Chem. 2007, 5, 1018.
(b) Cheng, L.; Han, X.; Huang, H.; Wong, M. W.; Lu, Y. Chem. Commun.
2007, 4143.
(16) (a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H.
Angew. Chem., Int. Ed. 2004, 43, 1983. (b) Cobb, A. J. A.; Shaw, D. M.;
Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3,
84. (c) Hartikka, A.; Arvidsson, P. I. Eur. J. Org. Chem. 2005, 4287.
(17) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Sumiya, T.; Urushima, T.;
Shoji, M.; Hashizume, D.; Koshino, K. AdV. Synth. Catal. 2004, 346, 1435.
(12) Hayashi, Y.; Aratake, S.; Okano, T.; Takahashi, J.; Sumiya, T.; Shoji,
M. Angew. Chem., Int. Ed. 2006, 45, 5527.
(13) (a) Hayashi, Y.; Aratake, S.; Itoh, T.; Okano, T.; Sumiya, T.; Shoji,
M. Chem. Commun. 2007, 957. (b) Aratake, S.; Itoh, T.; Okano, T.; Usui,
T.; Shoji, M.; Hayashi, Y. Chem. Commun. 2007, 2524.
22
Org. Lett., Vol. 10, No. 1, 2008