C O M M U N I C A T I O N S
besides the weak molecular ion (m/z ) 182), two other well-defined
fragments at m/z ) 112 and m/z ) 126 correspond to the parent
rings A and B (Figure 2).9.10 Cyclization of [2-2H]FPP (2b) is
predicted to generate [6-2H]geosmin (1b). The observed site of
deuterium labeling in 1b is consistent with the observed shift from
m/z 112 to 113 of the characteristic ring B fragment ion; while the
corresponding ring A-derived fragment ion from 1b, m/z 126, was
devoid of deuterium (Figure 2a). Most importantly, the mass
spectrum of 1b was indistinguishable from that of [6-2H]geosmin
derived from (1R)-[1-2H]FPP, which should differ from 1b only in
the configuration of the C-6 deuterium (Figure 2b).4
The results of conversion of both [13,13,13-2H3]FPP (2a) and
[2-2H]FPP (2b) to geosmins 1 and 1b are fully consistent with the
proposed mechanism of cyclization and fragmentation of germacra-
dienol (3) (Scheme 1a)4,9 while firmly excluding the mechanism
of Scheme 1b10 as well as alternative, mechanistically less likely
proposals.2b The retro-Prins fragmentation that results in the loss
of the germacradienol side chain as acetone has no biochemical
precedent. There is an exceptionally high level of amino acid
sequence conservation (45-78% identity, 57-85% similarity)
among more than a dozen known or presumed microbial geosmin
syntheses.7 The existence of two independent geosmin biosynthetic
pathways, at least among microorganisms, is therefore highly
unlikely.
Figure 1. Mass spectrum of [2H3-Me]-2,2-dimethylthiazolidine (9a).
Acknowledgment. This research was supported by National
Institutes of Health Grant GM30301 to D.E.C.
Supporting Information Available: Experimental methods, incu-
bation conditions, and GC-MS data. This material is available free of
References
(1) (a) Gerber, N. N. CRC Crit. ReV. Microbiol. 1979, 7, 191-214. (b) Buttery,
R. G.; Garibaldi, J. A. J. Agric. Food Chem. 1976, 24, 1246-1247.
(2) (a) Gerber, N. N.; Lechevalier, H. A. Appl. Microbiol. 1965, 935-938.
Gerber, N. N. Tetrahedron Lett. 1968, 2971-2974. (b) Pollak, F. C.;
Berger, R. G. Appl. EnViron. Microbiol. 1996, 6, 1295-1299. (c)
Dickschat, J. S.; Wenzel, S. C.; Bode, H. B.; Muller, R.; Schulz, S.
Chembiochem 2004, 5, 778-787. Dickschat, J. S.; Bode, H. B.; Wenzel,
S. C.; Muller, R.; Schulz, S. Chembiochem 2005, 6, 2023-2033. (d)
Scholler, C. E.; Gurtler, H.; Pedersen, R.; Molin, S.; Wilkins, K. J. Agric.
Food Chem. 2002, 50, 2615-2621. (e) La Guerche, S.; Chamont, S.;
Blancard, D.; Dubourdieu, D.; Darriet, P. Antonie Van Leeuwenhoek 2005,
88, 131-139.
Figure 2. Mass spectra of [6-2H]geosmin (1b) derived from (a) [2-2H]-
FPP and (b) (1R)-[1-2H]FPP.
[M+3]+ with fragment ions at m/z ) 102 and 105 resulting from
loss of the CD3- and CH3- groups, respectively (Figure 1). The
presence of the trideuterated 2-hydroxypropyl moiety in the
intermediate [12,12,12-2H3]-germacradienol (3a) was indicated
by a shift of the molecular ion [d3-M]+ from m/z ) 222 to 225
and a corresponding shift in the base peak from m/z ) 59 to 62
[CH3(CD3)CdOH]+, while the [M - acetone]+ fragment at m/z
164 was unchanged. The mass spectrum of the [12,12,12-2H3]-
germacrene D (4a) coproduct also displayed all the predicted
changes. The mass spectra of the derived geosmin (1, m/z 182)
and octalin (5, m/z 164) confirmed the complete absence of
deuterium label in either of these C12 products.
To explore the fate of the H-2 proton of FPP, the requisite [2-2H]-
FPP (2b) (>99 atom % deuterium) was synthesized from trideu-
teroacetic acid by way of [2,2-2H2]trimethylsilylacetic acid using
a modified Peterson olefination procedure that avoids exchange of
the deuterium label.13 GC-MS analysis of the products resulting
from cyclization of [2-2H]FPP (2b) showed the predicted germacra-
dienol-d1 (3b), germacrene D-d1 (4b), octalin-d1 (5b), and geosmin-
d1 (1b) (Scheme 2b). In the mass spectrum of unlabeled geosmin,
(3) (a) Cane, D. E.; Watt, R. M. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
1547-1551. (b) He, X.; Cane, D. E. J. Am. Chem. Soc. 2004, 126, 2678-
2679.
(4) Jiang, J.; He, X.; Cane, D. E. J. Am. Chem. Soc. 2006, 128, 8128-8129.
(5) Nawrath, T.; Dickschat, J. S.; Mu¨ller, R.; Jiang, J.; Cane, D. E.; Schulz,
S. J. Am. Chem. Soc. 2007, 129, 430-431.
(6) Cane, D. E.; He, X.; Kobayashi, S.; Omura, S.; Ikeda, H. J. Antibiot.
(Tokyo) 2006, 59, 471-479.
(7) Jiang, J.; He, X.; Cane, D. E. Nat. Chem. Biol. 2007, 3, 711-715.
(8) Gust, B.; Challis, G. L.; Fowler, K.; Kieser, T.; Chater, K. F. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 1541-1546.
(9) Dickschat, J. S.; Bode, H. B.; Mahmud, T.; Muller, R.; Schulz, S. J. Org.
Chem. 2005, 70, 5174-5182.
(10) Spiteller, D.; Jux, A.; Piel, J.; Boland, W. Phytochemistry 2002, 61, 827-
834. A similar mechanism has also been proposed for the formation of
(+)-dehydrogeosmin in flower heads of the cactus Rebutia marsoneri.
Cf. Feng, Z.; Huber, U.; Boland, W. HelV. Chim. Acta 1993, 76, 2547-
2552.
(11) Shibamoto, T. J. Pharm. Biomed. Anal. 2006, 41, 12-25.
(12) The [13,13,13-2H3]FPP was synthesized by Dr. P. C. Prabhakaran. Cf.
Cane, D. E.; Tandon, M.; Prabhakaran, P. C. J. Am. Chem. Soc. 1993,
115, 8103-8106.
(13) Arigoni, D.; Cane, D. E.; Shim, J. H.; Croteau, R.; Wagschal, K.
Phytochemistry 1993, 32, 623-631.
JA077792I
9
J. AM. CHEM. SOC. VOL. 130, NO. 2, 2008 429