(NH2COOCH2C6H5, 99%, Aldrich), 4-methoxyphenol (CH3OC6-
H4OH, 99%, Aldrich), and toluene (C6H5CH3, 97+%, Aldrich)
were used as received without further purification.
Org. Biomol. Chem., 2005, 3, 387–391; (e) X. Zhang, H. Shi and B.-Q.
Xu, Angew. Chem., Int. Ed., 2005, 44, 7132; (f) A. Corma and P. Serna,
Science, 2006, 313, 332–334; (g) X. Zhang, H. Shi and B.-Q. Xu, Catal.
Today, 2007, 122, 330–337; (h) D. J. Gorin and F. D. Toste, Nature,
2007, 446, 395–403.
Reaction Test: Nucleophilic addition of alcohols, amines, and
phenol to alkenes were performed in a closed glass reactor (2.0 mL,
2 For selected recent examples, see: (a) A. S. K. Hashmi, J. P. Weyrauch,
R
E. Kurpejovic´, T. M. Frost, B. Miehlich, W. Frey and J. W. Bats, Chem.–
Supelcoꢀ) equipped with a micro-syringe which allows sample
Eur. J., 2006, 12, 5806–5814; (b) G. Lemie`re, V. Gandon, N. Agenet,
J.-P. Goddard, A. Kozak, C. Aubert, L. Fensterbank and M. Malacria,
Angew. Chem., Int. Ed., 2006, 45, 7596–7599; (c) J. Barluenga, A.
Die´guez, A. Ferna´ndez, F. Rodr´ıguez and F. J. Fanana´s, Angew. Chem.,
Int. Ed., 2006, 45, 2091–2093; (d) E. Genin, P. Y. Tullec, S. Antoniotti,
C. Brancour, J.-P. Geneˆt and V. Michelet, J. Am. Chem. Soc., 2006,
128, 3112–3113; (e) A. W. Sromek, M. Rubina and V. Gevorgyan,
J. Am. Chem. Soc., 2005, 127, 10500–10501; (f) E. Mizushima, K. Sato,
T. Hayashi and M. Tanaka, Angew. Chem., Int. Ed., 2002, 41, 4563–
4565.
(20 lL) uptake through to analysis at the desired time. Certain
reactant mixtures were put into the reactor and closed tightly. After
extensive mixing under magnetic stirring at room temperature, the
reaction was assumed to start after the reactor was put into the oil
bath at the desired temperature and stirred extensively.
A typical procedure for the addition of alcohols to alkenes is:
the gold or palladium(II) catalyst (0.10 mmol) and/or a proper
amount (without specifying, the amount is equal to two moles
of gold, i.e., 0.20 mmol) of CuCl2 was added into 1.5 mL of
the mixtures of the alcohol and alkene (1.21 mmol). Then the
reactor was closed tightly and the reactants mixed in the room
temperature. Specifically, for the addition of methanol to styrene in
different atmospheres (N2, air, O2), the reactor was further purged
with the desired gas (e.g., N2) three times, then the reactants were
kept at 3.0 bar of the desired gas. The reaction was assumed to
start when the reactor was put into the oil bath at 120 ◦C (unless
otherwise specified) and stirred extensively.
A typical procedure for the addition of amines to alkenes is:
The reactants contain a mixture of alkene (0.50 mmol) and amine
(2.0 mmol for aniline, the others 1.0 mmol) and gold(III) salts
(8 mmol%, i.e. 0.04 mmol)-CuCl2 (16 mmol%, i.e. 0.08 mmol) in
toluene (1.5 mL). The reaction temperature is 150 ◦C.
A typical procedure for the addition of phenol to alkenes
is: The reactants contain a mixture of alkene (0.50 mmol) and
4-methoxphenol (1.0 mmol) and gold(III) salts (8 mmol%, i.e.
0.04 mmol)–CuCl2 (16 mmol%, i.e. 0.08 mmol) in toluene (1.5 mL).
The reaction temperature is 120 ◦C.
3 (a) C. Gonza´lez-Arellano, A. Corma, M. Iglesias and F. Sanchez,
J. Catal., 2006, 238, 497–501; (b) C. Gonza´lez-Arellano, A. Corma,
M. Iglesias and F. Sanchez, Chem. Commun., 2005, 27, 3451–3453;
(c) C. Gonza´lez-Arellano, A. Abad, A. Corma, H. Garc´ıa, M. Iglesias
and F. Sa´nchez, Angew. Chem., Int. Ed., 2007, 46, 1536–1538.
4 (a) X. Yao and C.-J. Li, J. Am. Chem. Soc., 2004, 126, 6884–
6885; (b) C.-G. Yang and C. He, J. Am. Chem. Soc., 2005, 127, 6966–
6967; (c) J. Zhang, C.-G. Yang and C. He, J. Am. Chem. Soc., 2006,
128, 1798–1799; (d) X. Zhang and A. Corma, Chem. Commun., 2007,
3080–3082.
5 (a) R. A. Widenhoefer and X. Han, Eur. J. Org. Chem., 2006, 4555–
3082; (b) J. H. Teles, S. Brode and M. Chabanas, Angew. Chem., Int. Ed.,
1998, 37, 1415–1418; (c) Y. Fukuda and K. Utimoto, J. Org. Chem.,
1991, 56, 3729–3731; (d) Y. Fukuda, K. Utimoto and H. Nozaki,
Heterocycles, 1987, 25, 297–300; (e) Y. Fukuda and K. Utimoto,
Synthesis, 1991, 975–978; (f) T. E. Mu¨ller, Tetrahedron Lett., 1998, 39,
5961–5962; (g) Handbook of Reagents for Organic Synthesis: Reagents,
Auxiliaries, and Catalysts for C–C Bond Formation, R. M. Coates and
S. E. Denmark, John Wiley & Sons, Ltd., UK, 1999, p. 566.
6 E. Mizushima, K. Sato, T. Hayashi and M. Tanaka, Angew. Chem., Int.
Ed., 2002, 41, 4563–4565.
7 I. I. Moiseev and M. N. Vargaftik, Coord. Chem. Rev., 2004, 248, 2381–
2391.
8 (a) J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in
Organic Synthesis, John Wiley & Sons, Ltd., UK, 2000, p. 420; (b) J. E.
˚
Ba¨ckvall, B. Akermark and S. O. Ljunggren, J. Am. Chem. Soc., 1979,
101, 2411–2416.
Acknowledgements
9 Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca
Roton, FL, USA, 80th edn, 1999, pp. 8–21.
This work was supported by the Spanish government (Project
MAT 2006–14274-C02–01). X. Zhang thanks the ITQ for post-
doctoral scholarship.
10 (a) S. Carrettin, J. Guzman and A. Corma, Angew. Chem., Int. Ed.,
2005, 44, 2242–2245; (b) L. D. Burke, A. J. Ahern and A. P. O’Mullane,
Gold Bull., 2002, 35, 3–10.
11 R. A. Widenhoefer and X. Han, Eur. J. Org. Chem., 2006, 4555–
4563.
12 T. E. Mu¨ller and M. Beller, Chem. Rev., 1998, 98, 675–703.
13 C. Brouwer and C. He, Angew. Chem., Int. Ed., 2006, 45, 1744–
1747.
14 Y. Luo, Z. Li and C. J. Li, Org. Lett., 2005, 7, 2675–2678.
15 Z. Li, J. Zhang, C. Brouwer, C. G. Yang, N. W. Reich and C. He, Org.
Lett., 2006, 8, 4175–4178.
References
1 For selected reviews, see: (a) A. S. K. Hashmi and G. J. Hutcings,
Angew. Chem., Int. Ed., 2006, 45, 7896–7936; (b) A. S. K. Hashmi,
Chem. Rev., 2007, 107, 3180–3211; (c) A. S. K. Hashmi, Angew. Chem.,
Int. Ed., 2005, 44, 6990–6993; (d) A. Hoffmann-Ro¨der and N. Krause,
This journal is
The Royal Society of Chemistry 2008
Dalton Trans., 2008, 397–403 | 403
©