A. J. Brouwer et al. / Bioorg. Med. Chem. Lett. 18 (2008) 78–84
83
Bol, K. M.; Liskamp, R. M. J. Tetrahedron Lett. 1991, 32,
5401; (d) Bol, K. M.; Liskamp, R. M. J. Tetrahedron 1992,
48, 6425; (e) Young, Y. F.; Lipton, M. A. Bioorg. Med.
Chem. Lett. 1993, 3, 2879; (f) McKinney, J. A.; Eppley, D.
F.; Keenan, R. M. Tetrahedron Lett. 1994, 35, 5985; (g)
Masse, C. E.; Knight, B. S.; Stavropoulos, P.; Panek, J. S.
J. Am. Chem. Soc. 1997, 119, 6040; (h) Kim, B. H.; Ahn,
H. J. Bull. Korean Chem. Soc. 1997, 18, 461; (i) Charrier,
C.; Ettouati, L.; Paris, J. Tetrahedron Lett. 1999, 40, 5705;
(j) Vasbinder, M. M.; Miller, S. J. J. Org. Chem. 2002, 67,
6240; (k) Regionato, G.; Gaggini, F.; Mordini, A.;
Valacchi, M. Tetrahedron 2005, 61, 6791; (l) Oishi, S.;
Miyamoto, K.; Niida, A.; Yamamoto, M.; Ajito, K.;
Tamamura, H.; Otaka, A.; Kuroda, Y.; Asai, A.; Fujii, N.
Tetrahedron 2006, 62, 1416, and references cited therein;
(m) Vasbinder, M. M.; Jarvo, E. R.; Miller, S. J. Angew.
Chem. Int. Ed. 2001, 40, 2824; (n) Oishi, S.; Kamano, T.;
Niida, A.; Odagaki, Y.; Hamanaka, N.; Yamamoto, M.;
Ajito, K.; Tamamura, H.; Otaka, A.; Fujii, N. J. Org.
Chem. 2002, 67, 6162; (o) Tamamura, H.; Hiramatzu, K.;
Myamoto, K.; Omagari, A.; Oishi, S.; Nakashima, H.;
Yamamoto, N.; Kuroda, Y.; Nakagawa, T.; Otaka, A.;
Fujii, N. Bioorg. Med. Chem. Lett. 2002, 12, 923; (p)
Garbe, D.; Sieber, S. A.; Bandur, N. G.; Koert, U.;
Marahiel, M. A. ChemBioChem 2004, 5, 1000; (q) Fu, Y.;
Bieschke, J.; Kelly, J. W. J. Am. Chem. Soc. 2005, 127,
15366; (r) Jenkins, C. L.; Vasbinder, M. M.; Miller, S. J.;
Raines, R. T. Org. Lett. 2005, 7, 2619; (s) Tamamura, H.;
Hiramatsu, K.; Ueda, S.; Wang, Z.; Kusano, S.; Tera-
kubo, S.; Trent, J. O.; Peiper, S. C.; Yamamoto, N.;
Nakashima, H.; Otaka, A.; Fujii, N. J. Med. Chem. 2005,
48, 380.
obtained as white solids. Characterization data for 4b: Rf
(MeOH/CH2Cl2, 2/98, v/v): 0.54; 1H NMR (CDCl3):
d = 1.38 (s, 9H, C(CH3)3, 2.75 (dd, 1H, PhCHa,
Jvic = 7.4 Hz, Jgem = 13.5 Hz), 2.86 (dd, 1H, PhCHb,
Jvic = 6.9 Hz, Jgem = 13.5 Hz), 3.53 (d, 2H, CH2SO2),
4.20 (d, 2H, NCH2Ph), 4.29 (m, 1H, CHCH2Ph), 4.71
(d, 1H, NHBoc), 5.09 (m, 1H, NHBn), 5.48 (m, 2H,
CH@CH), 7.13–7.36 (m, 10H, 2 · Ph); 13C NMR
(CDCl3): d = 28.2 (C(CH3)3), 40.8 (CHCH2Ph), 47.2
(NCH2PH), 53.2 (CHCH2Ph), 55.6 (CH2SO2), 79.8
(C(CH3)3), 118.6 (NCHCH@), 126.7, 128.0, 128.1, 128.5,
128.7, 129.4, 136.9, 137.0 (Ar-C), 139.5 (=CHCH2SO2),
155.2 (C@O (Boc)); ESI-MS: calculated for C23H30N2O4S-
Na [M+Na]+: 453.18, found: 453.55.
11. (a) Testero, S. A.; Mata, E. G. Org. Lett. 2006, 8, 4783; (b)
Tang, Q.; Wareing, J. R. Tetrahedron Lett. 2001, 42, 1399;
(c) Chang, S.; Na, Y.; Shin, H. J.; Choi, E.; Jeong, L. S.
Tetrahedron Lett. 2002, 43, 7445; (d) Ghalit, N.; Kemm-
ink, J.; Hilbers, H. W.; Versluis, C.; Rijkers, D. T. S.;
Liskamp, R. M. L. Org. Biomol. Chem. 2007, 5, 924.
12. Meienhofer, J.; Waki, M.; Heimer, E. P.; Lambros, T. J.;
Makofske, R. C.; Chang, C.-D. Int. J. Pep. Protein Res.
1979, 13, 35.
13. Volkmer-Engert, R.; Hoffmann, B.; Schneider-Mergener,
J. Tetrahedron Lett. 1997, 38, 1029.
14. Barber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A.
H. J. Am. Chem. Soc. 2000, 122, 8168.
15. Vedrenne, E.; Dupont, H.; Oualef, S.; Elka¨ım, L.;
Grimaud, L. Synlett 2005, 670.
16. For microwave-enhanced cross metathesis in solution, see
for example: Morris, T.; Sanman, D.; Caddick, S. Org.
Biomol. Chem. 2007, 5, 1025.
2. (a) De Bont, D. B. A.; Dijkstra, G. D. H.; den Hartog, J.
A. J.; Liskamp, R. M. J. Bioorg. Med. Chem. Lett. 1996, 6,
3035; (b) De Bont, D. B. A.; Moree, W. J.; Liskamp, R.
M. J. Bioorg. Med. Chem. 1996, 4, 667; (c) De Bont, D. B.
A.; Sliedregt-Bol, K. M.; Hofmeyer, L. J. F.; Liskamp, R.
M. J. Bioorg. Med. Chem. 1999, 7, 1043; (d) Liskamp, R.
M. J.; Kruijtzer, J. A. W. Mol. Divers. 2004, 8, 79; (e) Di-
segni, S.; Giordano, C.; Rahimipour, S.; Ben-aroya, N.;
Koch, Y.; Fridkin, M. J. Pept. Sci. 2005, 11, 45.
3. Brouwer, A. J.; Monnee, M. C. F.; Liskamp, R. M. J.
Synthesis 2000, 1579.
4. Paik, S.; White, E. H. Tetrahedron 1996, 52, 5303, and
references cited therein.
17. (a) Rijkers, D. T. S.; Ho¨ppener, J. W. M.; Posthuma, G.;
Lips, C. J. M.; Liskamp, R. M. J. Chem. Eur. J. 2002, 8,
4285; (b) Elgersma, R. C.; Meijneke, T.; Posthuma, G.;
Rijkers, D. T. S.; Liskamp, R. M. J. Chem. Eur. J. 2006,
12, 3714; (c) Elgersma, R. C.; Meijneke, T.; de Jong, R.;
Brouwer, A. J.; Posthuma, G.; Rijkers, D. T. S.; Liskamp,
R. M. J. Org. Biomol. Chem. 2006, 4, 3587; (d) Elgersma,
R. C.; Mulder, G. W.; Kruijtzer, J. A. W.; Posthuma, G.;
Rijkers, D. T. S.; Liskamp, R. M. J. Bioorg. Med. Chem.
Lett. 2007, 17, 1837.
18. Moriarty, D. F.; Raleigh, D. P. Biochemistry 1999, 38,
1811.
19. Fields, C. G.; Lloyd, D. H.; Macdonald, R. L.; Otteson,
K. M.; Noble, R. L. Pept. Res. 1991, 4, 95.
5. Rodriquez, M.; Llinares, M.; Doulut, S.; Heitz, J.;
Martinez, J. Tetrahedron Lett. 1991, 32, 923.
20. Peptide synthesis. Peptide isosteres 16 and 17 were
synthesized on a 0.26 mmol scale on Tentagel Fmoc-
Rink-Amide resin in order to obtain C-terminally ami-
dated peptides. Each synthetic cycle consisted of Na-Fmoc
removal by a 1 h treatment with 20% piperidine in NMP,
washings with NMP (2 · 2 min) and CH2Cl2 (5 · 2 min), a
45-min coupling step with preactivated Fmoc-amino acid
(1.04 mmol), and washings with NMP (2 · 2 min) and
CH2Cl2 (5 · 2 min). Na-Fmoc amino acids were activated
in situ with HBTU/HOBt (1.04 mmol, 0.21 M in NMP) in
the presence of DiPEA (2.08 mmol). 3-Butenoic acid was
coupled using normal amino acid coupling conditions for
3 h. Allylsulfonyl chloride (1.04 mmol), freshly prepared
from the corresponding sodium sulfonate using phosgene
(purification: silicagel plug, CH2Cl2; 85% yield; clear
colorless oil),3 was coupled using CH2Cl2 and DiPEA,
followed by normal washings. The cross metathesis
reaction was performed using allyl amine 6c (1.3 mmol),
Hoveyda Grubbs catalyst (8, 0.13 mmol), and Cy2BCl
(26 lmol) in toluene (20 mL, degassed (N2)). After stirring
overnight at 80 ꢂC, the resin was washed with methanol
(1 · 2 min), NMP (2 · 2 min), and CH2Cl2 (5 · 2 min).
The peptides were detached from the resin and
6. Monache, G. D.; Misiti, D.; Salvatore, P.; Zappia, G.
Tetrahedron: Asymmetry 2000, 11, 1137.
7. (a) Luly, J. R.; Dellaria, J. F.; Plattner, J. J.; Soderquist, J.
L.; Yi, N. J. Org. Chem. 1987, 52, 1487; (b) Briot, A.;
Bujard, M.; Gouverneur, V.; Mioskowski, C. Eur. J. Org.
Chem. 2002, 139.
8. (a) Hanson, P. R.; Probst, D. A.; Robinson, R. E.; Yau,
M. Tetrahedron Lett. 1999, 40, 4761; (b) Barton, W. R. S.;
Paquette, L. A. Can. J. Chem. 2004, 82, 113.
9. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953.
10. Synthesis of alkene dipeptidosulfonamide isosteres in solu-
tion. To a degassed (N2) solution of 1a–c (2.0 mmol) and 2
˚
(1.0 mmol) in CH2Cl2 (5 mL, dried on molsieves (4 A))
was added Grubbs catalyst 3 (42 mg, 50 lmol). The flask
was fitted with a reflux condenser and the mixture was
refluxed for 16 h while N2 gas bubbling through. Another
portion of catalyst 3 (42 mg, 50 lmol) was added and
stirring was continued for 24 h. The mixture was concen-
trated in vacuo and purified directly using silica gel
column chromatography (eluent: gradient EtOAc/hex-
anes, start: 1/6 ! 1/4 ! 1/2, v/v). Isosteres 4a–c were