¯
solution at 230 uC. M = 698.73, space group: monoclinic, P1, a =
10.566(3), b = 11.676(4), c = 17.636(6) s, a = 102.412(4), b = 93.045(4), c =
114.125(4)u, V = 1914.7(11) s3, Z = 2, T = 296(2) K, data: variables 6726:
381, R = 0.0459, Rw = 0.1233, GOF = 0.969; CCDC 658231. For
crystallographic data in CIF or other electronic format, see DOI: 10.1039/
b712972f
Generation of 4: to 20 mg 1 (0.032 mmol) in 2 mL toluene was added
12 mg Ph2SiH2 (0.064 mmol). The solution was cooled to 230 uC upon
which 6 mg Ph2PH (0.032 mmol) was added. The solution was allowed to
warm to room temperature, volatiles were removed in vacuo and the
residue was washed with pentane (2 6 2 mL), leaving 12 mg of 4
1
(0.013 mmol, 43% yield). H NMR (C6D6) d: 213.5 (1H, d of d, JH–P
=
28.4 Hz, JH–Rh = 15.4 Hz), 0.23 (3H, d, J = 6.6 Hz), 0.62 (3H, d, J =
6.6 Hz), 0.71 (3H, d, J = 6.6 Hz), 1.04 (3H, d, J = 6.6 Hz), 1.06 (3H, d,
J = 6.6 Hz), 1.11 (3H, d, J = 6.6 Hz), 1.43 (3H, d, J = 6.6 Hz), 1.47 (3H, d,
J = 6.6 Hz), 1.65 (3H, s), 1.88 (3H, s), 2.76 (1H, sept, J = 6.6 Hz), 2.82 (1H,
sept, J = 6.6 Hz), 4.07–4.16 (2H, ov sept, J = 6.6 Hz), 5.00 (1H, d, JH–Rh
=
36 Hz), 5.05 (1H, d, JP–H = 361 Hz), 5.34 (1H, s), 6.35–7.61 (26H, ov m).
31P{1H} NMR (C6D6) d: 47.4 (d of d, JP–H = 361 Hz, JP–Rh = 137 Hz).
29Si{1H} NMR (C6D6) d: 21.4 (d of d, J = 23.5 Hz, J = 34.1 Hz).
1 T. P. Fehlner, Inorganometallics, Plenum Press, New York, 1992.
2 F. Gauvin, J. F. Harrod and H. G. Woo, Adv. Organomet. Chem., 1998,
42, 363.
Scheme 3 Proposed mechanism of silylation of P2Ph4 and PPh2H.
3 J. Y. Corey, Adv. Organomet. Chem., 2004, 51, 1.
4 T. D. Tilley, Comments Inorg. Chem., 1990, 10, 37.
5 T. D. Tilley, Acc. Chem. Res., 1993, 26, 22.
6 N. Etkin, M. C. Fermin and D. W. Stephan, J. Am. Chem. Soc., 1997,
119, 2954.
(NacNac)RhH(SiHPh2)(PHPh2) (Scheme 2). This Rh(III) inter-
mediate is analogous to the Ir complexes (NacNac)IrH2(PR3)
isolated previously by Chirik and co-workers.30 This intermediate
is also related to CpRhH(SiR3)(PR3) complexes reported by
Marder and co-workers.31 Loss of H2 from this species would yield
the proposed intermediate (NacNac)Rh(SiHPh2)(PPh2) which is
proposed to undergo reductive elimination of the silyl–phosphide
product. This proposition suggests that reductive Si–P elimination
occurs more readily than ligand redistribution reactions.
In summary, the Rh-catalyst derived from 1 effects the catalytic
hydrogenation and silylation of diphosphines. Inherent in this
chemistry is the dehydrocoupling of secondary phosphines with
silanes. Further studies of the mechanism, catalyst optimization
and applications of these processes are ongoing.
7 N. Etkin, A. J. Hoskin and D. W. Stephan, J. Am. Chem. Soc., 1997,
119, 11420.
8 M. C. Fermin and D. W. Stephan, J. Am. Chem. Soc., 1995, 117, 12645.
9 J. D. Masuda, A. J. Hoskin, T. W. Graham, C. Beddie, M. C. Fermin,
N. Etkin and D. W. Stephan, Chem.–Eur. J., 2006, 12, 8696.
10 R. Shu, L. Hao, J. F. Harrod, H.-G. Woo and E. Samuel, J. Am. Chem.
Soc., 1998, 120, 12988.
11 S. Xin, H. G. Woo, J. F. Harrod, E. Samuel and A.-M. Lebuis, J. Am.
Chem. Soc., 1997, 119, 5307.
12 R. Waterman and T. D. Tilley, Angew. Chem., Int. Ed., 2006, 45, 2926.
13 V. P. W. Bohm and M. Brookhart, Angew. Chem., Int. Ed., 2001, 40,
4694.
14 L. Han and T. D. Tilley, J. Am. Chem. Soc., 2006, 128, 13698.
15 A. J. Roering, S. N. MacMillan, J. M. Tanski and R. Waterman, Inorg.
Chem., 2007, 46, 6855.
16 J. D. Masuda, W. W. Schoeller, B. Donnadieu and G. Bertrand, Angew.
Chem., Int. Ed., 2007, 46, 7052, and references therein.
17 G. Bai, P. Wei, A. Das and D. W. Stephan, Dalton Trans., 2006, 1141.
18 J. D. Masuda and D. W. Stephan, Can. J. Chem., 2005, 83, 324.
19 L. J. Arnold, L. Main and B. K. Nicholson, Appl. Organomet. Chem.,
1990, 4, 503.
Financial support from NSERC of Canada is gratefully
acknowledged. SJG is grateful for the award of an Ontario
Graduate Scholarship.
Notes and references
{ Preparation of 2 and 3: these compounds were prepared in a similar
fashion and thus only one preparation is detailed. To a solution of 30 mg
(0.081 mmol) P2Ph4 in 5 mL of toluene was added a solution of 50 mg 1
(0.079 mmol) in 5 mL of toluene. The mixture was allowed to stir overnight
upon which the solvent was removed in vacuo. The dark-red residue was
washed with 10 mL cold pentane to give 35 mg of the product 2
(0.039 mmol, 50% yield). 1H NMR (C6D6) d: 0.84 (6H, d, J = 6.5 Hz), 1.20
(6H, d, J = 6.5 Hz), 1.71 (6H, s), 4.45 (4H, sept, J = 6.5 Hz), 5.15 (1H, s),
6.73–7.19 (26H, br m). 31P{1H} NMR (C6D6) d: 251.4 (d, JP–Rh = 140 Hz).
13C NMR (C6D6) d: 24.0, 24.4, 28.6, 98.0, 124.0, 124.1, 127.5–128.6 (m,
obscured by C6D6), 128.9, 134.9 (app. t, J = 7.5 Hz), 157.7, 159.6. EA anal.
calcd for RhP2N2C53H61 (%) C: 71.21, H: 7.22, N: 3.13; found: C: 70.91, H:
7.22, N: 2.72. X-Ray quality crystals were grown by slow evaporation from
a pentane solution. M = 890.89, space group: monoclinic, P21/n, a =
10.8591(11), b = 35.296(4), c = 12.6312(13) s, b = 94.769(2)u, V =
4824.6(9) s3, Z = 4, T = 273(2) K, data: variables 8472: 525, R = 0.0484,
20 M. R. Churchill, C. Bueno and D. A. Young, J. Organomet. Chem.,
1981, 213, 139.
21 D. Rehder, J. Organomet. Chem., 1977, 137, C25.
22 K. Issleib and G. Schwager, Z. Anorg. Allg. Chem., 1961, 310, 43.
23 A. J. M. Caffyn and M. J. Mays, J. Organomet. Chem., 2005, 690, 2209.
24 H. Adams, A. Biebricher, S. R. Gay, T. Hamilton, P. E. McHugh,
M. J. Morris and M. J. Mays, J. Chem. Soc., Dalton Trans., 2000, 2983.
25 A. Martin, M. J. Mays, P. R. Raithby and G. A. Solan, J. Chem. Soc.,
Dalton Trans., 1993, 1431.
26 A. J. M. Caffyn, M. J. Mays, G. A. Solan, D. Braga, P. Sabatino,
G. Conole, M. McPartlin and H. R. Powell, J. Chem. Soc., Dalton
Trans., 1991, 3103.
27 G. Conole, M. McPartlin, M. J. Mays and M. J. Morris, J. Chem. Soc.,
Dalton Trans., 1990, 2359.
28 J. D. Korp, I. Bernal, J. L. Atwood, W. E. Hunter, F. Calderazzo and
D. Vitali, J. Chem. Soc., Chem. Commun., 1979, 576.
29 G. Fachinetti, C. Floriani and H. Stoeckli-Evans, J. Chem. Soc., Dalton
Trans., 1977, 2297.
1
Rw = 0.1099, GOF = 1.053; CCDC 658230. 3: H NMR (C6D6) d: 0.74
(8H, app. pent, J = 7.8 Hz), 1.26 (12H, t of d, J = 7.3 Hz, 2.9 Hz), 1.35
(12H, d, J = 6.9 Hz), 1.63 (12H, d, J = 6.9 Hz), 1.84 (6H, s), 4.19 (4H, sept,
J = 6.9 Hz), 5.19 (1H, s), 7.15–7.29 (6H, m). 31P NMR (C6D6) d: 264.51 (d,
J = 127 Hz). 13C NMR (C6D6) d: 9.8, 12.9, 22.4, 23.9 (d, J = 9.6 Hz), 28.3,
97.0, 123.2, 123.8, 127.3–130.5 (m, obscured by C6D6), 140.3, 156.7, 159.4.
EA anal. calcd for RhP2N2C37H55 (%) C: 63.32, H: 9.19, N: 3.99; found: C:
63.55, H: 9.24, N: 4.12. X-Ray quality crystals were grown from a pentane
30 W. H. Bernskoetter, E. Lobkovsky and P. J. Chirik, Organometallics,
2005, 24, 4367.
31 M. P. Campian, J. L. Harris, N. Jacin, R. N. Perutz, T. B. Marder and
A. C. Whitwood, Organometallics, 2006, 25, 5093.
This journal is ß The Royal Society of Chemistry 2008
Chem. Commun., 2008, 99–101 | 101