2 R. L. P. Adams, J. T. Knowler and D. P. Leader, The Biochemistry of
the Nucleic Acids, Chapman and Hall, London, 10th edn, 1986.
3 (a) R. A. Bissell, E. Cordova, A. E. Kaifer and J. F. Stoddart, Nature,
1994, 369, 133; (b) M. C. Jimenez-Molero, C. Dietrich-Buchecker and
J.-P. Sauvage, Chem.–Eur. J., 2002, 8, 1456.
4 (a) J. D. Ca´rdenas, A. Livoreil, W. Kaim and J.-P. Sauvage, J. Am.
Chem. Soc., 1996, 118, 11980; (b) A. Mirzoian and A. E. Kaifer, Chem.–
Eur. J., 1997, 3, 1052; (c) A. Altieri, F. G. Gatti, E. R. Kay, D. A. Leigh,
D. Martel, F. Paolucci, A. M. Z. Slawin and J. K. Y. Wong, J. Am.
Chem. Soc., 2003, 125, 8644; (d) Y. Liu, A. H. Flood and J. F. Stoddart,
J. Am. Chem. Soc., 2004, 126, 9150; (e) O. Lukin, A. Godt and
F. Vo¨gtle, Chem.–Eur. J., 2004, 10, 1878.
5 (a) A. Livoreil, J.-P. Sauvage, N. Armaroli, V. Balzani, L. Flamigni and
B. Ventura, J. Am. Chem. Soc., 1997, 119, 12114; (b) N. Koumura,
R. W. J. Zijlstra, R. A. van Delden, N. Harada and B. L. Feringa,
Nature, 1999, 401, 152; (c) A. M. Brouwer, C. Frochot, F. G. Gatti,
D. A. Leigh, L. Mottier, F. Paolucci, S. Roffia and G. W. H. Wurpel,
Science, 2001, 291, 2124; (d) V. Balzani, M. Clemente-Leo´n, A. Credi,
B. Ferrer, M. Venturi, A. H. Flood and J. F. Stoddart, Proc. Natl. Acad.
Sci. U. S. A., 2006, 103, 1178; (e) S. Shinkai, T. Nakaji, Y. Nishida,
T. Ogawa and O. Manabe, J. Am. Chem. Soc., 1980, 102, 5860; (f)
H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake and
N. Nakashima, J. Am. Chem. Soc., 1997, 119, 7605; (g) T. Muraoka,
K. Kinbara, Y. Kobayashi and T. Aida, J. Am. Chem. Soc., 2003, 125,
5612; (h) Y. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145.
6 (a) R. Breslow and A. D. Dong, Chem. Rev., 1998, 98, 1997; (b)
H. Takahashi, Y. Takashima, H. Yamaguchi and A. Harada, J. Org.
Chem., 2006, 71, 4878.
7 (a) N. Yamaguchi and H. W. Gibson, Angew. Chem., Int. Ed., 1999, 38,
143; (b) H. W. Gibson, N. Yamaguchi and J. W. Jones, J. Am. Chem.
Soc., 2003, 125, 3522; (c) J. H. K. K. Hirschberg, L. Brunsveld,
A. Ramzy, J. A. J. M. Vekemans, R. P. Sijbesma and E. W. Meijer,
Nature, 2000, 14, 167; (d) Y. H. Ko, E. Kim, I. Hwang and K. Kim,
Chem. Commun., 2007, 1305.
8 F. Vo¨gtle, T. Du¨nnwald and T. Schmidt, Acc. Chem. Res., 1996, 29, 451.
9 M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875.
10 (a) W. C. Cromwell, K. Bystrom and M. R. Eftink, J. Phys. Chem.,
1985, 89, 326; (b) M. R. Eftink, M. L. Andy, K. Bystrom,
H. D. Perlmutter and D. S. Kristol, J. Am. Chem. Soc., 1989, 111,
6765; (c) P. M. Ivanov, D. Salvatierra and C. Jaime, J. Org. Chem.,
1996, 61, 7012.
Fig. 5 Proposed supramolecular structures formed by cinnamamide
a-CD bearing an adamantyl group prepared by Method 1 and Method 2.
Consequently, the proposed supramolecular structures formed
by cinnamamide-a-CD bearing an adamantyl group prepared by
Method 1 or Method 2 are illustrated in Fig. 5.
In conclusion, we have prepared poly[2]rotaxane and supramo-
lecular assemblies formed from the same building blocks using
different preparation methods in an aqueous medium. Although
each unit of poly[2]rotaxane and supramolecular assembly is the
same building block, the structure of each supramolecular complex
was revealed to be quite different. This methodology should be
applicable to control the process of molecular recognition and the
formation of supramolecular structures.
The authors thank Dr Akihito Hashidzume, Mr Seiji Adachi
(Osaka University) and JASCO INTERNATIONAL for helpful
advice, 2D-NMR experiments and ESI-TOF MS measurements.
This work has been partially supported by Grant in-Aid No.
A19205014 for Scientific Research and has been conducted with
financial support from the ‘‘Stress and Symbiosis on
Supramolecules’’ program of the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
11 (a) J. E. H. Buston, J. R. Young and H. L. Anderson, Chem. Commun.,
2000, 905; (b) M. Tamura and A. Ueno, Bull. Chem. Soc. Jpn., 2000, 73,
147.
12 (a) T. Fujimoto, Y. Sakata and T. Kaneda, Chem. Commun., 2000,
2143; (b) T. Fujimoto, Y. Uejima, H. Imaki, N. Kawarabayashi,
J. H. Jung, Y. Sakata and T. Kaneda, Chem. Lett., 2000, 764; (c) Y. Liu,
C. C. You, M. Zhang, L. H. Weng, T. Wada and Y. Inoue, Org. Lett.,
2000, 2, 2761; (d) H. Onagi, C. H. Easton and S. F. Lincoln, Org. Lett.,
2001, 3, 1041; (e) M. Miyauchi, Y. Takashima, H. Yamaguchi and
A. Harada, J. Am. Chem. Soc., 2005, 127, 2984; (f) V. H. S. Tellini,
A. Jover, J. C. Garc´ıa, L. Galantini, F. Meijide and J. V. Tato, J. Am.
Chem. Soc., 2006, 128, 5728.
13 (a) A. Harada, Y. Kawaguchi and T. Hoshino, J. Inclusion Phenom.
Macrocyclic Chem., 2001, 41, 115; (b) A. Harada, M. Miyauchi and
T. Hoshino, J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 3519; (c)
M. Miyauchi, Y. Kawaguchi and A. Harada, J. Inclusion Phenom.
Macrocyclic Chem., 2004, 50, 57.
Notes and references
{ The Rh value was calculated using the Stokes–Einstein equation. The D
value for 2-CiO-a-CD was only observed up to 32 mM because above this
concentration powder crystal was formed. The D value corrected by
viscosity is listed in the supporting information{ (Table S1).
1 (a) H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block and
J. Gelles, Science, 1995, 270, 1653; (b) N. Hirokawa, Science, 1998, 279,
519; (c) K. Kitamura, M. Tokunaga and A. H. Iwane, Nature, 1999,
397, 129; (d) E. P. Sablin, Curr. Opin. Cell Biol., 2000, 12, 35; (e)
R. D. Vale and R. A. Milligan, Science, 2000, 288, 88.
14 (a) O. E. Stejskal and J. E. Tanner, J. Chem. Phys., 1965, 42, 288; (b)
P. Stilbs, Prog. Nucl. Magn. Reson. Spectrosc., 1987, 19, 1.
458 | Chem. Commun., 2008, 456–458
This journal is ß The Royal Society of Chemistry 2008