Coumarin as AttractiVe CK2 Inhibitor Scaffold
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 4 759
reductase from Pneumocystis carinii. J. Med. Chem. 2001, 44, 2391–
2402.
(22) Huang, D.; Caflisch, A. Efficient evaluation of binding free energy
using continuum electrostatics solvation. J. Med. Chem. 2004, 47,
5791–5797.
Supporting Information Available: Experimental procedures
and spectral data of all newly synthesized compounds and 1H NMR
and HRMS data of some already known compounds. This material
(23) Zhou, R.; Friesner, R. A.; Ghoshs, A.; Rizzo, R. C.; Jorgensen, W. J.;
Levy, R. M. New linear interaction method for binding affinity
calculations using a continuum solvent model. J. Phys. Chem. B 2001,
105, 10388–10397.
(24) Tounge, B. A.; Reynolds, C. H. Calculation of the binding affinity of
ꢀ-secretase inhibitors using the linear interaction energy method.
J. Med. Chem. 2003, 46, 2074–2082.
(25) Singh, P.; Mhaka, A. M.; Christensen, S. B.; Gray, J. J.; Denmeade,
S. R.; Isaacs, J. T. Applying linear interaction energy method for
rational design of noncompetitive allosteric inhibitors of the sarco-
and endoplasmic reticulum calcium-ATPase. J. Med. Chem. 2005, 48,
3005–3014.
(26) Ermakova, I.; Boldyreff, B.; Issinger, O. G.; Niefind, K. Crystal
structure of a C-terminal deletion mutant of human protein kinase CK2
catalytic subunit. J. Mol. Biol. 2003, 330, 925–934.
References
(1) Meggio, F.; Pinna, L. A. One-thousand-and-one substrates of protein
kinase CK2? FASEB J. 2003, 17, 349–368.
(2) Litchfield, D. W. Protein kinase CK2: Structure, regulation and role
in cellular decisions of life and death. Biochem. J. 2003, 369, 1–15.
(3) Seldin, D. C.; Leder, P. Casein kinase II alpha transgene-induced
murine lymphoma: relation to theileriosis in cattle. Science 1995, 267,
894–897.
(4) Kelliher, M. A.; Seldin, D. C.; Leder, P. Tal-1 induces T cell acute
lymphoblastic leukemia accelerated by casein kinase IIR. EMBO J.
1996, 15, 5160–5166.
(5) Landesman-Bollag, E.; Channavajhala, P. L.; Cardiff, R. D.; Seldin,
D. C. p53 deficiency and misexpression of protein kinase CK2R
collaborate in the development of thymic lymphomas in mice.
Oncogene 1998, 16, 2965–2974.
(6) Orlandini, M.; Semplici, F.; Ferruzzi, R.; Meggio, F.; Pinna, L. A.;
Oliviero, S. Protein kinase CK2R is induced by serum as a delayed
early gene and cooperates with Ha-ras in fibroblast transformation.
J. Biol. Chem. 1998, 273, 21291–21297.
(7) Guo, C.; Yu, S.; Wang, H.; Davis, A. T.; Green, J. E.; Ahmed, K. A
potential role of nuclear matrix-associated protein kinase CK2 in
protection against drug-induced apoptosis in cancer cells. J. Biol.
Chem. 2001, 276, 5992–5999.
(8) Tawfic, S.; Yu, S.; Wang, H.; Faust, R.; Davis, A.; Ahmed, K. Protein
kinase CK2 signal in neoplasia. Histol. Histopathol. 2001, 16, 573–
582.
(9) Unger, G. M.; Davis, A. T.; Slaton, J. W.; Ahmed, K. Protein kinase
CK2 as regulator of cell survival: implications for cancer therapy. Curr.
Cancer Drug. Targets 2004, 4, 77–84.
(27) Niefind, K.; Guerra, B.; Ermakowa, I.; Issinger, O. G. Crystal structure
of human protein kinase CK2: insights into basic properties of the
CK2 holoenzyme. EMBO J. 2001, 20, 5320–5331.
(28) Niefind, K.; Guerra, B.; Pinna, L. A.; Issinger, O. G.; Schomburg, D.
Crystal structure of the catalytic subunit of protein kinase CK2 from
Zea mays at 2.1 A resolution. EMBO J. 1998, 17, 2451–2462.
(29) Pechkova, E.; Zanotti, G.; Nicolini, C. Three-dimensional atomic
structure of a catalytic subunit mutant of human protein kinase CK2.
Acta Crystallogr. Sect. D: Biol. Crystallogr. 2003, 59, 2133–2139.
(30) Battistutta, R.; Mazzorana, M.; Cendron, L.; Bortolato, A.; Sarno, S.;
Kazimierczuk, Z.; Canotti, G.; Moro, S.; Pinna, L. A. Role of water
and a positive electrostatic potential in the binding of protein kinase
CK2 inhibitors. ChemBioChem 2007, 8, 1804–1809.
(31) ACD/pKa, version 10.0, Advanced Chemistry Development, Inc.,
(32) Battistutta, R.; De Molier, E.; Sarno, S.; Zanotti, G.; Pinna, L. A.
Structural features underlying selective inhibition of protein kinase
CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci.
2001, 10, 2200–2206.
(33) Meggio, F.; Shugar, D.; Pinna, L. A. Ribofuranosyl-benzimidazole
derivatives as inhibitors of casein kinase-2 and casein kinase-1. Eur.
J. Biochem. 1990, 187, 89–94.
(10) De Moliner, E.; Moro, S.; Sarno, S.; Zagotto, G.; Zanotti, G.; Pinna,
L. A.; Battistutta, R. Inhibition of protein kinase CK2 by an-
thraquinone-related compounds. A structural insight. J. Biol. Chem.
2003, 278, 1831–1836.
(11) Meggio, F.; Pagano, M. A.; Moro, S.; Zagotto, G.; Ruzzene, M.; Sarno,
S.; Cozza, G.; Bain, J.; Elliott, M.; Deana, A. D.; Brunati, A. M.;
Pinna, L. A. Inhibition of protein kinase CK2 by condensed polyphe-
nolic derivatives. An in vitro and in vivo study. Biochemistry 2004,
43, 12931–12936.
(34) Battistutta, R.; De Moliner, E.; Sarno, S.; Zanotti, G.; and Pinna, L. A.
Protein Sci. 2001, 10, 2200–2206.
(12) Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.;
Fabbro, D.; Furet, P. Discovery of a potent and selective protein kinase
CK2 inhibitor by high-throughput docking. J. Med. Chem. 2003, 46,
2656–2662.
(13) Toledo-Sherman, L.; Deretey, E.; Slon-Usakiewicz, J. J.; Ng, W.; Dai,
J. R.; Foster, J. E.; Redden, P. R.; Uger, M. D.; Liao, L. C.; Pasternak,
A.; Reid, N. Frontal affinity chromatography with MS detection of
EphB2 tyrosine kinase receptor. 2. Identification of small-molecule
inhibitors via coupling with virtual screening. J. Med. Chem. 2005,
48, 3221–3230.
(14) Cozza, G.; Bovini, P.; Zorzi, E.; Paletto, G.; Pagano, M. A.; Sarno,
S.; Donella-Deana, A.; Zagotto, G.; Rosolen, A.; Pinna, L. A.; Meggio,
F.; Moro, S. Identification of ellagic acid as potent inhibitor of protein
kinase CK2: a successful example of a virtual screening application.
J. Med. Chem. 2006, 49, 2363–2366.
(35) Leslie, A. G. W. In Crystallographic Computing V; Moras, D.,
Podjarny, A. D., Thierry, J. P., Eds.; Oxford University Press, Oxford,
U.K., 1991; pp 27–38.
(36) Collaborative Computational Project, Number 4, The CCP4 suite:
Programs for protein crystallography. Acta Crystallogr. 1994, D50,
760–763.
(37) Lovell, S. C.; Davis, I. W.; Arendall, W. B., 3rd; de Bakker, P. I.;
Word, J. M.; Prisant, M. G.; Richardson, J. S.; Richardson, D. C.
Structure validation by C-alpha Geometry: phi, psi and C-beta
deviation. Proteins: Struct., Funct., Genet. 2003, 50, 437–450.
(38) Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular
graphics. Acta Crystallogr. 2004, D60, 2126–2132.
(39) Meggio, F.; Donella Deana, A.; Pinna, L. Endogenous phosphate
acceptor proteins for rat liver cytosolic casein kinases. J. Biol. Chem.
1981, 256, 11958–11961.
(15) Pagano, M.A.; Paletto, G.; Di Maira, G.; Cozza, G.; Ruzzane, M.;
Sarno, S.; Bain, J.; Elliott, M.; Moro, S.; Zagotto, G.; Meggio, F.;
Pinna, L. A. Tetrabromocinnamic acid (TBCA) and related compounds
represent a new class of specific protein kinase CK2 inhibitors.
ChemBioChem 2007, 8, 129–139.
(16) Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple
coumarins and analogues in medicinal chemistry: Occurrence, synthesis
and biological activity. Curr. Med. Chem. 2005, 12, 887–916.
(17) Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related
compounds to determine their therapeutic role in the treatment of
cancer. Curr. Pharm. Des. 2004, 10, 3797–3811.
(18) Åquist, J.; Medina, C.; Samuelsson, J.-E. A new method for predicting
binding affinity in computer-aided drug design. Protein Eng. 1994, 7,
385–391.
(19) Bortolato, A.; Moro, S. In Silico binding free energy predictability
by using linear interaction energy (LIE) method: Bromo-benzimidazole
CK2 inhibitors as case study. J. Chem. Inf. Model. 2007, 47, 572–
582.
(40) Sarno, S.; Vaglio, P.; Meggio, F.; Issinger, O.-G.; Pinna, L. A. Protein
kinase CK2 mutants defective in substrate recognition. Purification
and kinetic analysis. J. Biol. Chem. 1996, 271, 10595–10601.
(41) MOE (The Molecular Operating Environment), version 2006.08,
software available from Chemical Computing Group Inc., 1010
Sherbrooke Street West, Suite 910, Montreal, Canada H3A 2R7; http://
(42) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.;
Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman,
P. A. A second generation force field for the simulation of proteins,
nucleic acids and organic molecules. J. Am. Chem. Soc. 1995, 117,
5179–5196.
(43) Halgren, T. Merck molecular force field. I. Basis, form, scope,
parameterization, and performance of MMFF94. J. Comput. Chem.
1996, 17, 490–519.
(44) Carlson, A.; Jorgensen, W, L. An extended linear response method
for determining free energies of hydration heather. J. Phys. Chem.
1995, 99, 10667–10673.
(20) Hansson, T.; Åquist, J. Estimation of binding-free energies for HIV
proteinase inhibitors by molecular dynamics simulation. Protein Eng.
1995, 8, 1137–1144.
(21) Graffner-Nordberg, M.; Kolmodin, K.; Aqvist, J.; Queener, S. F.;
Hallberg, A. Design, synthesis, computational prediction, and biologi-
cal evaluation of ester soft drugs as inhibitors of dihydrofolate
(45) Gallicchio, E.; Zhang, L. Y.; Levy, R. M. The SGB/NP hydration
free energy model based on the surface generalized born solvent
reaction field and novel nonpolar hydration free energy estimators.
J. Comput. Chem. 2002, 23, 517–529.
JM070909T