Published on Web 01/25/2008
Discovery, Characterization, and Optimization of an Unnatural
Base Pair for Expansion of the Genetic Alphabet
Aaron M. Leconte, Gil Tae Hwang, Shigeo Matsuda, Petr Capek,
Yoshiyuki Hari, and Floyd E. Romesberg*
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road,
La Jolla, California, 92037
Received October 26, 2007; E-mail: floyd@scripps.edu
Abstract: DNA is inherently limited by its four natural nucleotides. Efforts to expand the genetic alphabet,
by addition of an unnatural base pair, promise to expand the biotechnological applications available for
DNA as well as to be an essential first step toward expansion of the genetic code. We have conducted two
independent screens of hydrophobic unnatural nucleotides to identify novel candidate base pairs that are
well recognized by a natural DNA polymerase. From a pool of 3600 candidate base pairs, both screens
identified the same base pair, dSICS:dMMO2, which we report here. Using a series of related analogues,
we performed a detailed structure-activity relationship analysis, which allowed us to identify the essential
functional groups on each nucleobase. From the results of these studies, we designed an optimized base
pair, d5SICS:dMMO2, which is efficiently and selectively synthesized by Kf within the context of natural
DNA.
We,9,10,15,16 and others,8,12,17-19 have shown that hydrophobic
1. Introduction
forces are also sufficient for the enzymatic synthesis of an
unnatural base pair by incorporation of an unnatural nucleoside
triphosphate against a template unnatural nucleotide; however,
synthesis beyond the unnatural base pair, i.e., extension, tends
to be relatively inefficient and generally limits the utility of these
base pairs. Recent efforts to modify either the nucleobases20-24
or the DNA polymerase25 have significantly improved the rate
of extension of unnatural base pairs and have demonstrated that
efficient extension by the exonuclease deficient Klenow frag-
ment of E. coli DNA Pol I (Kf) likely requires a minimally
distorted primer terminus with a suitably positioned minor
groove H-bond acceptor in the primer nucleobase. Unfortunately,
these strategies have yet to yield a viable base pair candidate
as the modifications that facilitate extension have also been
DNA is an essential biomolecule which is responsible for
encoding the complex information necessary for life. However,
it is limited to a set of nucleobases that encode a finite number
of three base codons; the expansion of the genetic alphabet to
include additional, coding nucleobases would significantly
increase the information potential of nucleic acids in Vitro1,2
and, ultimately, in ViVo. While significant progress has been
made toward both developing and applying unnatural base pairs
that form through unique hydrogen-bonding (H-bonding)
patterns,3-7 pairing based on hydrophobic interactions has also
emerged as a promising strategy for expansion of the genetic
alphabet.8-12 Hydrophobic forces are capable of stabilizing the
unnatural base pairs, as well as disfavoring mispairing with the
natural nucleobases due to forced desolvation of the natural
H-bonding functional groups. Indeed, several nucleotides bearing
predominantly hydrophobic nucleobase analogues have been
shown to pair stably and selectively in duplex DNA.13,14
(13) Berger, M.; Wu, Y.; Ogawa, A. K.; McMinn, D. L.; Schultz, P. G.;
Romesberg, F. E. Nucleic Acids Res. 2000, 28, 2911-2914.
(14) Matsuda, S.; Romesberg, F. E. J. Am. Chem. Soc. 2004, 126, 14419-
14427.
(15) McMinn, D. L.; Ogawa, A. K.; Wu, Y.; Liu, J.; Schultz, P. G.; Romesberg,
F. E. J. Am. Chem. Soc. 1999, 121, 11585-11586.
(16) Ogawa, A. K.; Wu, Y.; Berger, M.; Schultz, P. G.; Romesberg, F. E. J.
Am. Chem. Soc. 2000, 122, 8803-8804.
(1) Joyce, G. F. Ann. ReV. Biochem. 2004, 73, 791-836.
(2) Cropp, T. A.; Chin, J. W. Curr. Opin. Chem. Biol. 2006, 10, 601-6.
(3) Switzer, C.; Moroney, S. E.; Benner, S. A. J. Am. Chem. Soc. 1989, 111,
8322-8323.
(17) Matray, T. J.; Kool, E. T. J. Am. Chem. Soc. 1998, 120, 6191-6192.
(18) Matray, T. J.; Kool, E. T. Nature 1999, 399, 704-708.
(19) Chiaramonte, M.; Moore, C. L.; Kincaid, K.; Kuchta, R. D. Biochemistry
2003, 42, 10472-10481.
(4) Geyer, C. R.; Battersby, T. R.; Benner, S. A. Structure (Camb.) 2003, 11,
1485-1498.
(5) Prudent, J. R. Expert. ReV. Mol. Diagn. 2006, 6, 245-52.
(6) Yang, Z.; Sismour, A. M.; Sheng, P.; Puskar, N. L.; Benner, S. A. Nucleic
Acids Res. 2007, 35, 4238-49.
(20) Leconte, A. M.; Matsuda, S.; Hwang, G. T.; Romesberg, F. E. Angew.
Chem., Int. Ed. 2006, 45, (26), 4326-4329.
(7) Sismour, A. M.; Benner, S. A. Nucleic Acids Res. 2005, 33, 5640-6.
(8) Hirao, I.; Kimoto, M.; Mitsui, T.; Fujiwara, T.; Kawai, R.; Sato, A.; Harada,
Y.; Yokoyama, S. Nat. Methods 2006, 3, 729-35.
(21) Hwang, G. T.; Leconte, A. M.; Romesberg, F. E. ChemBioChem 2007, 8,
1606-11.
(22) Kim, Y.; Leconte, A. M.; Hari, Y.; Romesberg, F. E. Angew. Chem., Int.
Ed. 2006, 45, 7809-12.
(9) Ogawa, A. K.; Wu, Y.; McMinn, D. L.; Liu, J.; Schultz, P. G.; Romesberg,
F. E. J. Am. Chem. Soc. 2000, 122, 3274-3287.
(23) Matsuda, S.; Leconte, A. M.; Romesberg, F. E. J. Am. Chem. Soc. 2007,
129, 5551-7.
(10) Henry, A. A.; Olsen, A. G.; Matsuda, S.; Yu, C.; Geierstanger, B. H.;
Romseberg, F. E. J. Am. Chem. Soc. 2004, 126, 6923-6931.
(11) Henry, A. A.; Romesberg, F. E. Curr. Opin. Chem. Biol. 2003, 7, 727-
733.
(24) Adelfinskaya, O.; Nashine, V. C.; Bergstrom, D. E.; Davisson, V. J. J.
Am. Chem. Soc. 2005, 127, 16000-16001.
(25) Leconte, A. M.; Chen, L.; Romesberg, F. E. J. Am. Chem. Soc. 2005, 127,
12470-1.
(12) Hirao, I. Curr. Opin. Chem. Biol. 2006, 10, 622-7.
9
2336
J. AM. CHEM. SOC. 2008, 130, 2336-2343
10.1021/ja078223d CCC: $40.75 © 2008 American Chemical Society