to leave the metal center in order to initiate the catalytic
cycle. However it can play a more active role, by joining
back and assisting the metal in another key elemental step,
such as reductive elimination. The reality of such a synergic
effect was recently unambiguously demonstrated in nickel-
catalyzed reactions.5
efficiency in AAA, we focused on modular 1,3,2-diaza-
phospholidines12-13 and chose ligands 4a-f as standards. We
completed that small library with a set of classical mono-
dentate NHCs 5a-e and related bidentate P-NHCs 6a,b
(Scheme 1).
As recently stated,6c NHCs are far from outclassing the
popular P-ligands in asymmetric organometallic catalysis.6
One reason for this low success rate may lie in the particular
optimization of chiral catalysts, which cannot usually be
dissociated from a serendipitous search for key structural
features through screening of collections of ligands. Indeed,
NHCs are far from matching the enormous structural
diversity of their phosphorus analogues.7 Thus, bidentate
P-NHCs, which would meet the attractive electronic and
steric properties of NHCs and would also benefit from
successful decades of innumerable studies in designing chiral
phosphines, should have emerged as a powerful class of
chiral ligands. But strikingly, they have generally yielded
poor results.8
In this paper, we address the issue of the added value of
NHCs in asymmetric catalysis, with respect to trusted chiral
P-ligands. Focusing on the critical need of chiral NHCs for
structural diversity, we considered an alternative strategy
based on the combination9 of monodentate NHCs with highly
tunable monodentate chiral P-ligands. Herein, we validate
this approach for a specific model reaction by reporting the
proof of a synergic effect between these two partners.
As a model reaction, we chose the prototypical asymmetric
palladium-catalyzed allylic alkylation (AAA)10 of 1,3-diphen-
ylallylacetate 1 by dimethyl malonate 2 because it perfectly
illustrates the paradoxical statement that initiated our study.
Indeed P-NHC ligands have already been tested in AAA,8g-i
but they afforded poor enantiomeric excesses (ee’s), whereas
a synergic effect between a phosphine and such a strong
σ-donor partner would have been expected.11 Among the
numerous chiral P-ligands that have already proven their
Scheme 1
Monodentate chiral ligands 4a-f were engaged in the
palladium-catalyzed AAA in standard conditions. As ex-
pected, the reaction was completed within 1-3 h at 0 °C in
dichloromethane. Compound 3 was obtained with excellent
isolated yields and with ees ranging from 26% to 82% (Table
1, entries 1-6). In marked contrast, classical NHCs 5a,b
are unefficient because their strong σ-donation decreases the
(9) Mixtures of monodentate P-ligands have been recently developed as
a new tool for combinatorial asymmetric Rh-catalysis: (a) Reetz, M. T.;
Sell, T.; Meiswinkel, A.; Mehler, G. Angew. Chem. 2003, 115, 814-817;
Angew. Chem., Int. Ed. 2003, 42, 790-793. (b) Reetz, M. T.; Mehler, G.
Tetrahedron Lett. 2003, 44, 4593-4596. (c) Pen˜a, D.; Minnaard, A. J.;
Boogers, J. A. F.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. Org.
Biomol. Chem. 2003, 1, 1087-1089. (d) Monti, C.; Gennari, C.; Piarulli,
U. Tetrahedron Lett. 2004, 45, 6859-6862. (e) Reetz, M. T.; Li, X. Angew.
Chem. 2005, 117, 3019-3021; Angew. Chem., Int. Ed. 2005, 44, 2959-
2962. (f) Hoen, R.; Boogers, J. A. F.; Bernsmann, H.; Minnaard, A. J.;
Meetsma, A.; Tiemersma-Wegman, T. D.; de Vries, A. H. M.; de Vries, J.
G.; Feringa, B. L. Angew. Chem. 2005, 117, 4281-4284; Angew. Chem.,
Int. Ed 2005, 44, 4209-4212. (g) Duursma, A.; Pen˜a, D.; Minnaard, A. J.;
Feringa, B. L. Tetrahedron: Asymmetry 2005, 16, 1901-1904. (h) Monti,
C.; Gennari, C.; Piarulli, U.; de Vries, J. G.; de Vries, A. H. M.; Lefort, L.
Chem. Eur. J. 2005, 11, 6701-6717. (i) Reetz, M. T.; Fu, Y.; Meiswinkel,
A. Angew. Chem. 2006, 118, 1440-1443; Angew. Chem., Int. Ed. 2006,
45, 1412-1415. (j) Reetz, M. T.; Bondarev, O. Angew. Chem., Int. Ed.
2007, 119, 4607-4610; Angew. Chem., Int. Ed. 2007, 46, 4523-4526.
(10) (a) Pfaltz, A.; Lautens, M. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Heidelberg,
1999; pp 833-886. (b) Trost, B. M.; Van Vranken, D. L. Chem. ReV. 1996,
96, 395-422. (c) Trost, B. M.; Lee C. In Catalytic Asymmetric Synthesis,
2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; pp 593-649. (d)
Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2007, 46, 2-42; Angew. Chem.
2007, 119, 2-42.
(4) Other classes of stable carbenes could arise as alternative to NHCs;
a bidentate aminocarbene-phosphine ligand has been recently reported:
Vignolle, J.; Donnadieu, B.; Bourissou, D.; Soleilhavoup, M.; Bertrand, G.
J. Am. Chem. Soc. 2006, 128, 14810-14811.
(5) (a) Chiu, P. L.; Lai, C.-L.; Chang, C.-F.; Hu, C.-H.; Lee, H. M.
Organometallics 2005, 24, 6169-6178. (b) Lee, C.-C.; Ke, W.-C.; Chan,
K.-T.; Lai, C.-L.; Hu, C.-H.; Lee, H. M. Chem. Eur. J. 2007, 13, 582-
591. (c) Ho, C.-Y.; Jamison, T. F. Angew. Chem., Int. Ed. 2007, 46, 782-
785; Angew. Chem. 2007, 119, 796-799.
(6) (a) Perry, M. C.; Burgess, K. Tetrahedron: Asymmetry 2003, 14,
951-961. (b) Cesar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc.
ReV. 2004, 33, 619-636. (c) Mauduit, M.; Clavier H. In N-Heterocyclic
Carbenes in Synthesis; Nolan, S. P., Ed.; Wiley-VCH: Weinheim, 2006;
pp 183-239.
(7) (a) ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz,
A., Yamamoto H., Eds.; Springer: Heidelberg, 1999. (b) Catalytic Asym-
metric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000.
(c) Grabulosa, A.; Granell, J.; Muller, G. Coord. Chem. ReV. 2007, 251,
25-90.
(8) (a) Seo, H.; Park, H.-J.; Kim, B. Y.; Lee, J. H.; Son, S. U.; Chung,
Y. K. Organometallics 2003, 22, 618-620. (b) Gischig, S.; Togni, A.
Organometallics 2004, 23, 2479-2487. ( c) Bappert, E.; Helmchen, G.;
Synlett 2004, 16, 1789-1793. (d) Focken, T.; Raabe, G.; Bolm, C.
Tetrahedron: Asymmetry 2004, 15, 1693-1706. (e) Nanchen, S.; Pfaltz,
A. HelV. Chim. Acta 2006, 89, 1559-1573. (f) Focken, T.; Rudolph, J.;
Bolm, C. Synthesis 2005, 3, 429-436. (g) Hodgson, R.; Douthwaite, R. E.
J. Organomet. Chem. 2005, 690, 5822-5831. (h) Flahaut, A.; Roland, S.;
Mangeney, P. J. Organomet. Chem. 2007, 692, 5754-5762. (i) Visenti,
F.; Togni, A. Organometallics 2007, 26, 3746-3754.
(11) The resulting electronic distortion upon the allyl moiety of the
palladium complex should afford good ee’s, because the enantioselectivity
is governed by the regioselectivity of the attack of the soft nucleophile on
the coordinated π-allyl. See for example: Helmchen, G.; Pfaltz, A. Acc.
Chem. Res. 2000, 33, 336-345.
(12) (a) Brunel, J.-M.; Constantieux, T.; Labande, A.; Lubatti, F.; Buono,
G. Tetrahedron Lett. 1997, 38, 5971-5974. (b) Constantieux, T.; Brunel,
J.-M.; Labande, A.; Buono, G. Synlett 1998, 1, 49-50. (c) Muchow, G.;
Brunel, J.-M.; Maffei, M.; Pardigon, O.; Buono, G. Tetrahedron 1998, 54,
10435-10448. (d) Brunel, J.-M.; Constantieux, T.; Buono, G. J. Org. Chem.
1999, 64, 8940-8942. (e) Brunel, J.-M.; Tenaglia, A.; Buono, G.
Tetrahedron: Asymmetry 2000, 11, 3585-3590. (f) Ansell, J.; Wills, M.
Chem. Soc. ReV. 2002, 31, 259-268. (g) Gavrilov, K. N.; Bondarev, O.
G.; Polosukhin, A. I. Russ. Chem. ReV. 2004, 73, 671-699. (h) Tsarev, V.
N.; Lyubimov, S. E.; Shiryaev, A. A.; Zheglov, S. V.; Bondarev, O. G.;
Davankov, V. A.; Kabro, A. A.; Moiseev, S. K.; Kalinin, V. N.; Gavrilov,
K. N. Eur. J. Org. Chem. 2004, 2214-2222.
(13) (a) Brunel, J. M.; Chiodi, O.; Faure, B.; Fotiadu, F.; Buono, G. J.
Organomet. Chem. 1997, 529, 285-294. (b) Legrand, O.; Brunel, J.-M.;
Constantieux, T.; Buono, G. Chem. Eur. J. 1998, 4, 1061-1067.
1454
Org. Lett., Vol. 10, No. 7, 2008