1268
G. A. Molander, R. A. Oliveira / Tetrahedron Letters 49 (2008) 1266–1268
Table 3
5. (a) Welton, T. Chem. Rev. 1999, 99, 2071–2083; (b) Earle, M. J.;
Seddon, K. R. Pure Appl. Chem. 2000, 72, 1391–1398.
6. Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P.,
Horvath, I. T., Eds.; Wiley-VCH: Weinheim, 2004.
7. Reviews: (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–
927; (b) Vedejs, E.; Peterson, M. J.. In Advances in Carbanion
Chemistry; Snieckus, V., Ed.; JAI Press: New York, 1996; Vol. 2, pp
1–86; (c) Edmonds, M.; Abell, A. In Modern Carbonyl Olefination
Methods and Applications; Takeda, T., Ed.; Wiley-VCH: Weinheim,
Germany, 2004; pp 1–17.
8. Walker, B. J. In Organophosphorus Reagents in Organic Synthesis;
Cadogan, J. I. G., Ed.; Academic Press: London, UK, 1980; pp 155–
205.
Reaction of formyl-substituted organotrifluoroborates 1b–g with 1-(tri-
phenylphosphoranylidene)acetone 2b in water at 90 °C
2b
O
KF3B Ar CHO
KF3B
Ar
5b-g
H2O, 90 oC, 12 h
1b-g
Entry
1
KF3B–Ar-CHO
BF3K
E:Zb
Yielda (%)
1b
Only E
60:40
51:49
52:48
56:44
62:38
70
85
60
62
81
69
9. (a) Xu, C.; Chen, G.; Fu, C.; Huang, X. Synth. Commun. 1995, 25,
2229–2233; (b) Spinella, A.; Fortunati, T.; Soriente, A. Synlett 1997,
93–94; (c) Frattini, S.; Quai, M.; Cereda, E. Tetrahedron Lett. 2001,
42, 6827–6829; (d) Wu, J.; Wu, H.; Wei, S.; Dai, W.-M. Tetrahedron
Lett. 2004, 45, 4401–4404.
CHO
CHO
2
3
4
5
1c
KF3B
10. Silveira, C. C.; Perin, G.; Braga, A. L. J. Chem. Res., Synop. 1994,
492–493.
BF3K
11. Matikainen, J. K.; Kaltia, S.; Hase, T. Synlett 1994, 817–818.
12. Le Boulaire, V.; Gree, R. Chem. Commun. 2000, 2195–2196.
13. Patil, V. J.; Mavers, U. Tetrahedron Lett. 1996, 37, 1281–1284.
14. (a) House, H. O.; Jones, V. K.; Frank, G. A. J. Org. Chem. 1964, 29,
3327–3333; (b) Hooper, D. L.; Garagan, S.; Kayser, M. M. J. Org.
Chem. 1994, 59, 1126–1128.
15. (a) Fliszar, S.; Hudson, R. F.; Salvadori, G. Helv. Chim. Acta 1964,
47, 159–162; (b) Ruchardt, C.; Panse, P.; Eichler, S. Chem. Ber. 1967,
100, 1144–1164; (c) Corey, E. J.; Clark, D. A.; Goto, G.; Marfat, A.;
Mioskowski, C.; Samuelsson, B.; Hammarstrom, S. J. Am. Chem.
Soc. 1980, 102, 1436–1439; (d) Marriott, D. P.; Bantick, J. R.
Tetrahedron Lett. 1981, 22, 3657–3658; (e) Thiemann, T.; Thiemann,
C.; Sasaki, S.; Vill, V.; Mataka, S.; Tashiro, M. J. Chem. Res. Synop.
1997, 248–249.
F
1d
1e
1f
OHC
CHO
BF3K
O
O
MeO
KF3B
CHO
16. Orsini, F.; Sello, G.; Fumagalli, T. Synlett 2006, 1717–1718.
17. Stafford, J. A.; McMurry, J. E. Tetrahedron Lett. 1988, 29, 2531–2534.
18. Westman, G.; Wennerstrom, O.; Raston, I. Tetrahedron 1993, 49,
483–488.
KF3B
6
1g
19. Fodor, G.; Tomoskozi, I. Tetrahedron Lett. 1961, 2, 579–582.
20. (a) Nonnenmacher, A.; Mayer, R.; Plieninger, H. Liebigs Ann. Chem.
1983, 2135–2140; (b) Isaacs, N. S.; El-Din, G. N. Tetrahedron Lett.
1987, 28, 2191–2192.
CHO
S
a
Yield is given for the isolated product, >95% pure by NMR.
E/Z ratios were determined by 1H NMR.
b
21. Thiemann, T.; Watanabe, M.; Tanaka, Y.; Mataka, S. New J. Chem.
2004, 28, 578–584.
ylide reagents as a valuable synthetic tool to access E-ole-
fins in moderate to good yields using water as the solvent.
22. (a) Wu, J.; Yue, C. Synth. Commun. 2006, 36, 2939–2947; (b) Wu, J.;
Li, D.; Zhang, D. Synth. Commun. 2005, 35, 2543–2551; (c) Wu, J.;
Zhang, D.; Wei, S. Synth. Commun. 2005, 35, 1213–1222; (d)
Dambacher, J.; Zhao, W.; El-Batta, A.; Annes, R.; Jiang, C.;
Bergdahl, M. Tetrahedron Lett. 2005, 46, 4473–4477.
Acknowledgments
23. (a) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275–286; (b)
Stefani, H. A.; Cella, R.; Vieira, A. S. Tetrahedron 2007, 63, 3623–3658;
(c) Molander, G. A.; Figueroa, R. Aldrichim. Acta 2005, 38, 49–56.
24. Molander, G. A.; Figueroa, R. J. Org. Chem. 2006, 71, 6135–6140.
25. Molander, G. A.; Ham, J.; Canturk, B. Org. Lett. 2007, 9, 821–824.
26. Vedejs, E.; Peterson, M. J. In Topics in Stereochemistry; Eliel, E. L.,
Wilen, S. H., Eds.; John Wiley & Sons: New York, 1994; Vol. 21.
27. (a) Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M.
R. J. Org. Chem. 1995, 60, 3020–3027; (b) Vedejs, E.; Fields, S. C.;
Hayashi, R.; Hitchcock, S. R.; Powell, D. R.; Schrimpf, M. R. J. Am.
Chem. Soc. 1999, 121, 2460–2470.
28. Typical procedure: A mixture of formyl-substituted organotrifluorob-
orates 1a–e (1.0 mmol) and the appropriate carbonyl-stabilized ylide
2a–d (1.5 mmol) was added to a flask followed by the addition of
water (2.0 mL). The mixture was heated to 90 °C for 12 h. After this
period, the water was removed in vacuo and the residue was washed
with dichloromethane (3 Â 5.0 mL) and acetone (2 Â 5 mL). The
products were obtained as white solids after drying under high
vacuum.
We thank the National Institutes of Health (GM35249),
Merck Research Laboratories and Amgen for their gener-
ous support. R.A.O. is also thankful to CNPq (Brazil)
for her fellowship.
References and notes
1. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice;
Oxford University Press: USA, 2000.
2. (a) Horvath, I. T.; Anastas, P. T. Chem. Rev. 2007, 107, 2169–2173;
(b) Hutchings, G. J. Catal. Today 2007, 122, 196–200; (c) Kidwai, M.
Pure Appl. Chem. 2006, 78, 1983–1992.
3. (a) Li, C.-J. Chem. Rev. 1993, 93, 2023–2035; (b) Li, C.-J. Chem. Rev.
2005, 105, 3095–3165; (c) Pringle, P. G.; Brewin, D.; Smith, M. B.;
Worboys, K. In Aqueous Organometallic Chemistry and Catalysis;
Horvath, I. T., Joo, F., Eds.; Kluwer Academic: Dordrecht, 1995.
4. Jessop, P. G.; Leitner, W. Chemical Synthesis Using Supercritical
Fluids; Wiley-VCH: Weinheim, 1999.