C O M M U N I C A T I O N S
Table 2. On-Bead Conjugation of Azy-Tripeptides with Thiolsa
glycoconjugates 15 and 17 (19% over 14 steps and 43% over 10
steps, respectively) from 8 (g88%/step).
This work describes the synthesis and convergent site-selective
conjugation of aziridine-2-carboxylic acid-containing peptides with
thiols, both in solution and on solid support. The synthesis and use
of FmocAzyOH in this capacity demonstrate both the efficient
incorporation and tolerance of the Azy moiety in multistep Fmoc-
SPPS, as well as the competence of solution and on-bead ligation
through a highly regioselective base-promoted aziridine ring-
opening process. The strategy presents prospects not only for the
convergent preparation of complex oligosaccharyl-peptide con-
jugates and multivalent glycopeptide displays but also for the rapid
assembly of Azy-containing peptides for functional proteomics
studies.12
peptide conjugate;
time (h),
temp ( C)
yield from 8 or 9, %
entry
peptide
R2SH
°
(yield/step, %)
1
2
3
4
5
10
10
11
10
11
EtSH
tBuSH
EtSH
7
16, 23
28, 23
22, 23
22, 60
22, 60
13a; 52% (93%)a
13b; 40% (90%)a
14a; 35% (89%)b
13c; 21% (86%)a,c
14b; 17% (84%)b,c
7
a Reagents and conditions: (a) resin cleavage: (CF3)2CHOH:CH2Cl2
(20% v/v). b Resin and tBu-ester removal: TFA:CH2Cl2:iPr3SiH:HS(CH2)2SH
) 10:10:1:1. c Acetate removal: NaOMe, MeOH, pH 8.5.
Acknowledgment. This research was supported by the NIH
(GM58833 and GM58822). A Procter and Gamble Fellowship to
D.P.G. is acknowledged. We thank Jennifer Showerman for useful
suggestions on SPPS, and Kate Lindley for initial exploratory work
in base-promoted aziridine thiolysis.
Scheme 3 a
Supporting Information Available: Experimental details . This
information is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A.
Science 2001, 291, 2370-2376. (b) Bertozzi, C. R.; Kiessling, L. L.
Science 2001, 291, 2357-2364. (c) Seitz, O.; Heinemann, I.; Mattes, A.;
Waldmann, H. Tetrahedron 2001, 57, 2247-2277.
(2) (a) Mahal, L. K.; Yarema, K. J.; Bertozzi, C. R. Science 1997, 276, 1125-
1128. (b) Melnyk, O.; Fehrentz, J.-A.; Martinez, J.; Gras-Masse, H.
Biopolymers 2000, 55, 165-186. (c) Deiters, A.; Cropp, T. A.; Mukherji,
M.; Chin, J. W.; Anderson, J. C.; Schultz, P. G. J. Am. Chem. Soc. 2003,
125, 11782-11783 and references therein.
a Reagents and conditions: (a) DBU, DMF, 60 °C; (b) TFA:CH2Cl2:
iPr3SiH:HS(CH2)2SH ) 10:10:1:1; (c) NaOMe, MeOH, pH 8.5; (d) DBU,
DMF, 23 °C; (e) (CF3)2CHOH:CH2Cl2 (20% v/v).
(3) (a) Okawa, K.; Nakajima, K. Biopolymers 1981, 20, 1811-1821. (b)
Wakamiya, T.; Shimbo, K.; Shiba, T.; Nakajima, K.; Neya, M.; Okawa,
K. Bull. Chem. Soc. Jpn. 1982, 55, 3878-3881. (c) Nakajima, K.; Oda,
H.; Okawa, K. Bull. Chem. Soc. Jpn. 1983, 56, 520-522. (d) Kuyl-
Yeheskiely, E.; Dreef-Tromp, C. M.; van der Marel, G. A.; van Boom, J.
H. Recl. TraV. Chim. Pays-Bas 1989, 108, 314-316. (e) Korn, A.;
Rudolph-Bo¨hner, S.; Moroder, L. Tetrahedron 1994, 50, 1717-1730. (f)
Tam, J. P.; Xu, J.; Eom, K. D. Biopolymers 2001, 60, 194-205.
(4) Shao, H.; Jiang, X.; Gantzel, P.; Goodman, M. Chem. Biol. 1994, 1, 231-
234.
coupling of single Fmoc-amino acids were unsuccessful, presumably
due to intramolecular aziridine N-deacylation by the liberated amine
upon Fmoc removal at the [Azy+2] position (Scheme 2). Fortu-
nately, employing a dipeptide building block for simultaneous
incorporation of the [Azy+2] and [Azy+3] residues avoided
aziridine deacylation, allowing for further sequential peptide
elongation.11
After successful incorporation of the Azy into peptides via SPPS,
each was used for on-bead ligation with thiols (Table 2). The
polymer-supported peptides were treated with the thiols (5-10
equiv) in the presence of DBU (1 equiv) in DMF. After 16-28 h,
the products were removed from the solid support with concomitant
peptide deprotection ((CF3)2CHOH or TFA). Preparative RP-HPLC
purification provided the deprotected peptide conjugates in good
overall isolated yields (calculated from 8 and 9). For example,
preparation of pentapeptides 10 and 11 and ligation with EtSH or
tBuSH provided peptide conjugates 13a-b and 14a, each in a nine-
step sequence from 8 or 9 with an average yield of at least 89%
per step (Table 2, entries 1-3).
In like manner, the C1 thio analogue of the TN-antigen 7 was
reacted with polymer-supported pentapeptides 10 and 11 (Table 2,
entries 4-5). Release of thioglycopeptides from the resin, followed
by acetate removal provided, after RP-HPLC purification, the
thioglycopeptides 13c and 14b in 21 and 17% yield, respectively,
each over a 10-step sequence (g84%/step). Finally, on-bead
synthesis and ligation of heptapeptide 12 with thiol 7 (Scheme 3A),
as well as peptide 10 with the more complex thio-STN-antigen 167h
(Scheme 3B), proceeded with equally high efficiency providing,
after release from solid support, deprotection and RP-HPLC,
(5) For aminolysis of N-Ns-Azy-OtBu with benzylamine and Et3N (0.2 equiv),
see: Turner, J. J.; Sikkema, F. D.; Filippov, D. V.; van der Marel, G. A.;
van Boom, J. H. Synlett 2001, 1727-1730.
(6) In each case, the minor â2 product was obtained as a single diastereomer,
assumed to result from inversion (absolute configuration not determined).
(7) For approaches to the preparation of glycopeptide mimetics, see: (a)
Recent review: Peri, F.; Nicotra, F. Chem. Commun. 2004, 623-627.
(b) Zhao, Y.; Kent, S. B. H.; Chait, B. T. Proc. Natl. Acad. Sci. U.S.A.
1997, 94, 1629-1633. (c) Rodriguez, E. C.; Winans, K. A.; King, D. S.;
Bertozzi, C. R. J. Am. Chem. Soc. 1997, 119, 9905-9906. (d) Zhu, Y.,
van der Donk, W. A. Org. Lett. 2001, 3, 1189-1192. (e) Cohen, S. B.;
Halcomb, R. L. J. Am. Chem. Soc. 2002, 124, 2534-2543. (f) Liu, H.;
Wang, L.; Brock, A.; Wong, C.-H.; Schultz, P. G. J. Am. Chem. Soc.
2003, 125, 1702-1703. (g) Watt, G. M.; Lund, J.; Levens, M.; Kolli, V.
S. K.; Jefferis, R.; Boons, G.-J. Chem. Biol. 2003, 10, 807-814. (h)
Galonic´, D. P.; van der Donk, W. A.; Gin, D. Y. Chem. Eur. J. 2003, 9,
5997-6006. (i) Zhu, X.; Schmidt, R. R. Chem. Eur. J. 2004, 10, 875-
887. (j) Gamblin, D. P.; Garnier, P.; van Kasteren, S.; Oldham, N. J.;
Fairbanks, A. J.; Davis, B. G. Angew. Chem., Int. Ed. 2004, 43, 828-
833. For ligation approaches to the preparation of native linkages, see,
for example: (k) Miller, J. S.; Dudkin, V. Y.; Lyon, G. J.; Muir, T. W.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 431-434.
(8) Bollhagen, R.; Schmiedberger, M.; Barlos, K.; Grell, E. J. Chem. Soc.,
Chem. Commun. 1994, 2559-2560.
(9) For the preparation of FmocAzyOH, see Supporting Information.
(10) Wade, J. D.; Bedford, J.; Sheppard, R. C.; Tregear, G. W. Pept. Res.
1991, 4, 194-199.
(11) Analytical samples of Azy-peptides from SPPS were assayed ((CF3)2-
CHOH cleavage; ESI-MS, 1H NMR) to be 80-90% pure prior to ligation.
(12) Moroder, L.; Musiol, H.-J.; Scharf, R. FEBS Lett. 1992, 299, 51-53.
JA046793X
9
J. AM. CHEM. SOC. VOL. 126, NO. 40, 2004 12713