C O M M U N I C A T I O N S
was found.12 This would be explained in terms of an easier
formation of cationic species IV.13
Table 2. Scope of C-2 Arylation of N-Methylindole
In conclusion, we have developed a new methodology that allows
for the first time the direct C-2 arylation of indoles with aryl iodides
at room temperature without the presence of phosphines or other
ligands. These mild conditions permit a broad set of functionalities
both in the indole and in the aryl iodide units, and a variety of
novel compounds have been prepared in excellent yields. Mecha-
nistic studies toward the understanding of the catalytic cycle are
under way.
Acknowledgment. We are grateful to Prof. Anthony G. M.
Barrett for his support. We also gratefully acknowledge the EPSRC
National Mass Spectrometry Service, University of Wales Swansea.
Supporting Information Available: Detailed experimental pro-
cedures and characterization data for new compounds. This material is
References
a
b
The reaction was carried out for 7 h. The reaction was carried out
(1) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174.
(b) Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrichimica Acta 2007,
20, 35. (c) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200. (d) Seregin,
I. V.; Gevorgyan, V. Chem. Soc. ReV 2007, 36, 1173. (e) Godula, K.;
Sames, D. Science 2006, 312, 67. (f) Kakiuchi, F.; Chatani, N. AdV. Synth.
Catal. 2003, 345, 1077.
c
for 24 h. The reaction was carried out with 5 equiv of the iodoarene for
38 h.
Table 3. C-2 Arylation of Functionalized Indoles
(2) (a) Corbet, J.-P.; Mignani, G. Chem. ReV. 2006, 106, 2651. (b) Hassan,
J.; Sevignon, M.; Gozzi, C.; Shulz, E.; Lemaire, M. Chem. ReV. 2002,
102, 1359. (c) Anastasia, L.; Negishi, E. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York,
2002.
(3) (a) Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924. (b) Deprez,
N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 4972.
(4) (a) Wang, X.; Gribkov, D. V.; Sames, D. J. Org. Chem. 2007, 72, 1476.
(b) Zhang, Z.; Hu, Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R.
Tetrahedron Lett. 2007, 48, 2415. (c) Bellina, F.; Calandri, C.; Cauteruccio,
S.; Rossi, R. Tetrahedron 2007, 63, 1970. (d) Toure´, B. B.; Lane, B. S.;
Sames, D. Org. Lett. 2006, 8, 1979. (e) Bellina, F.; Cauteruccio, S.; Rossi,
R. Eur. J. Org. Chem. 2006, 1379. (f) Wang, X.; Lane, B. S.; Sames, D.
J. Am. Chem. Soc. 2005, 127, 4996. (g) Lane, B. S.; Brown, M. A.; Sames,
D. J. Am. Chem. Soc. 2005, 127, 8050. (h) Bressy, C.; Alberico, D.;
Lautens, M. J. Am. Chem. Soc. 2005, 127, 4990. (i) Lane, B. S.; Sames,
D. Org. Lett. 2004, 6, 2897.
(5) For recent C-arylation of indoles with unactivated arenes see: (a) Stuart,
D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072.
(b) Stuart, D. R.; Fagnou, K. Science 2007, 317, 1172. (c) Dwight, T. A.;
Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137.
(6) (a) Liston, D. J.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem.
Soc. 1989, 111, 6643. (b) Albano, V. G.; Di Serio, M.; Monari, M.;
Orabona, I.; Panunzi, A.; Ruffo, F. Inorg. Chem. 2002, 41, 2672.
(7) (a) Nova, A.; Ujaque, G.; Maseras, F.; Lledos, A.; Espinet, P. J. Am.
Chem. Soc. 2006, 128, 14571. (b) Amatore, C.; Carre, E.; Jutand, A.;
M’Barki, M. A.; Meyer, G. Organometallics, 1995, 14, 5605.
(8) (a) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. (b)
Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J.
Am. Chem. Soc. 2006, 128, 1066.
(9) For a mechanistic discussion on C-2/C-3 selectivity in indole arylation,
see ref 4g
(10) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129,
9879 and references therein.
(11) (a) Hirabayashi, K.; Mori, A.; Kawashima, J.; Suguro, M.; Nishihara, Y.;
Hiyama, T. J. Org. Chem. 2000, 65, 5342. (b) Karabelas, K.; Westerlund,
C.; Hallberg, A. J. Org. Chem. 1985, 50, 3896.
(12) Other solvents afforded much lower conversions: CH2Cl2 (27%), CH3-
CN (14%), AcOH (50%), and DMA (50%) compared to DMF (95%).
(13) (a) Amatore, C.; Jutand, A.; Lemaitre, F.; Ricard, J. L.; Kozuch, S.; Shaik,
S. J. Organomet. Chem. 2004, 689, 3728. (b) Schmulling, M.; Grove, D.
M.; van Koten, G.; van Eldik, R.; Veldman, N.; Spek, A. L. Organome-
tallics 1996, 15, 1384.
a
b
The reaction was carried out at 50 °C for 38 h. The reaction was
carried out using 10 mol % Pd(OAc)2.
under this system (entry 2) requiring 38 h at 50 °C to afford 62%
of the C-2 arylated product. As for the substitution on the benzene
ring of the indole unit, it can incorporate a wide array of functional
groups such as nitrile, bromide, aldehyde, and benzylic alcohol
(entries 3-6).
Mechanistically both a Pd0/II and a PdII/IV catalytic cycle are
conceivable. A PdII/IV cycle has been suggested in a related C-H
arylation system using silver acetate in acetic or trifluoroacetic acid
as the solvent but at much higher temperatures (120 to 140 °C).10
Otherwise, removal of iodide from a palladium(II) species by Ag2O
has also been suggested in other cross-coupling processes.11 In our
system, the mechanistic rationale must account for the important
role of the base. Indeed, the counterintuitive inverse correlation
between the pKa of the conjugated acid and catalytic activity is
consistent with the hypothesis suggested in Scheme 1. Furthermore,
an important solvent specificity for the highly coordinating DMF
JA710731A
9
J. AM. CHEM. SOC. VOL. 130, NO. 10, 2008 2927