SCHEME 1. Synthetic Access to Fluorinated Furans from
Alcohols 2 and 4
Synthesis of 2,4,5-Trisubstituted 3-Fluorofurans
via Sequential Iodocyclization and
Cross-Coupling of gem-Difluorohomopropargyl
Alcohols
Satoru Arimitsu, Jesse M. Jacobsen, and
Gerald B. Hammond*
Department of Chemistry, UniVersity of LouisVille,
LouisVille, Kentucky 40292
gb.hammond@louisVille.edu
ReceiVed January 14, 2008
conditions (Scheme 1).6 However, these methodologies use a
proton (H+) electrophile, which does not permit installing a
synthetic handle to access multi-substituted fluorinated furans.
If instead we could use a halide electrophile, we would then be
able to install this reactive halide on the furan structure, which
could eventually be functionalized by further cross-coupling
reactions. We are now pleased to report the synthesis of
fluorinated iodofurans and their conversion into 2,4,5-trisub-
stituted 3-fluorofurans using a Suzuki coupling reaction.
The iodocyclization of gem-difluorohomoallenyl and gem-
difluorohomopropargyl alcohols with I2 and ICl, respectively,
produced the corresponding fluorinated iodofuran analogues
in good yields. The iodo substituent in fluorinated 4-io-
dofurans was utilized as a synthetic handle to prepare multi-
substituted 3-fluorofurans using a Suzuki cross-coupling
reaction. The yields of both iodocyclization of gem-difluo-
rohomopropargyl alcohol and subsequent Suzuki coupling
were dramatically enhanced by microwave irradiation.
As a point of entry to the ensuing discussions, the iodocy-
clization of gem-difluorohomoallenyl alcohol 2 produced 2,2-
difluoro-3-iodo-2,5-dihydrofuran 3 under mild conditions (1
equiv). The expectedsand observedsiodocyclization pattern7
was driven by the high electrophilicity of the gem-difluorovinyl
carbon.8 In marked contrast, the lesser reactivity of the triple
bond in gem-difluorohomopropargyl alcohol 4a hindered its
The furan structure is a ubiquitous unit in a variety of natural
products, active pharmaceuticals, agricultural compounds, fra-
grances, and synthetic precursors.1 A concise synthetic meth-
odology for multi-substituted furans remains an important task
in modern organic chemistry.2 A particularly underdeveloped
area of furan chemistry is the synthesis of its fluorine congeners,3
despite the fact that the presence of fluorine has often enhanced
the pharmacokinetic properties of a parent molecule and that
many current pharmaceuticals contain fluorine(s).4
Our group has reported the indium-mediated selective syn-
thesis of gem-difluorohomoallenyl alcohol 2 and gem-difluo-
rohomopropargyl alcohol 4 from difluoropropargyl bromide 1.5
Both alcohols have demonstrated their usefulness as building
blocks in the synthesis of fluorinated furan analogues under basic
(4) For general reviews, see: (a) Uneyama, K. Organofluorine Chemistry;
Blackwell: Oxford, 2006. (b) Chambers, R. D. Fluorine in Organic
Chemistry; Blackwell: Oxford, 2004 (c) Kirsch, P. Modern Fluoroorganic
Chemistry; Wiley-VCH: Weinheim, Germany, 2004. (d) Koksch, B.;
Sewald, N.; Jakubke, H.-D.; Burger, K. Biomedical Frontiers of Fluorine
Chemistry; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; American
Chemical Society: Washington, DC, 1996. For examples of 3,3-gem-
difluoromethylenated nucleoacids, see: (e) Zhou, W.; Gumina, G.; Chong,
Y.; Wang, J.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. 2004, 47, 3399-
3408. (f) Zhang, X.; Xia, H.; Dong, X.; Jin, J.; Meng, W.-D.; Qing, F.-L.
J. Org. Chem. 2003, 68, 9026-9033. (g) Patel, V. F.; Hardin, J. N.; Mastro,
J. M.; Law, K. L.; Zimmermann, J. L.; Ehlhardt, W. J.; Woodland, J. M.;
Starling, J. J. Bioconjugate Chem. 1996, 7, 497-510. (h) Hertel, L. W.;
Kroin, J. S.; Misner, J. W.; Tustin, J. M. J. Org. Chem. 1987, 52, 2406-
2409.
(5) For a review of gem-difluoroallenes, see: (a) Hammond, G. B. J.
Fluorine Chem. 2006, 127, 476-488. For synthesis of gem-difluoro-
homopropargyl alcohols, see: (b) Arimitsu, S.; Jacobsen, J. M.; Hammond,
G. B. Tetrahedron Lett. 2007, 48, 1625-1627. (c) Arimitsu, S.; Hammond,
G. B. J. Org. Chem. 2006, 71, 8865-8868. (d) Kirihara, M.; Takuwa, T.;
Takizawa, S.; Momose, T.; Nemoto, H.; Tetrahedron 2000, 56, 8275-
8280. (e) Wang, Z.-G.; Hammond, G. B. J. Org. Chem. 2000, 65, 6547-
2255.
(1) (a) Lipshutz, B. H. Chem. ReV. 1986, 86, 795-819. (b) Dean, F. M.
In AdVances in Heterocyclic Chemistry; Katritzky A. R., Ed.; Academic
Press: New York, 1983; Vol. 31, pp 273-344. (c) Nakanishi, K., Goto,
T., Ito, S., Natori, S., Nozoe, S., Eds.; Natural Products Chemistry;
Kodansha: Tokyo, 1974; Vols. 1-3.
(2) (a) Babudri, F.; Cicco, S. R.; Farinola, G. M.; Lopez, L. C.; Naso,
F.; Pinto, V. Chem. Commun. 2007, 3756-3758. (b) Kirsch, S. F. Org.
Biomol. Chem. 2006, 4, 2076-2080. (c) Minetto, G.; Raveglia, L. F.; Sega,
A.; Taddei, M. Eur. J. Org. Chem. 2005, 2, 5277-5288. (d) Stauffer, F.;
Neier, R. Org. Lett. 2000, 2, 3535-3537 and references cited therein.
(3) For examples of substituted 3-fluorofurans, see: (a) Pomeisl, K.;
Cejka, J.; Kvicala, J.; Paleta, O. Eur. J. Org. Chem. 2007, 5917-5923. (b)
Arimitsu, S.; Hammond. G. B. J. Org. Chem. 2007, 72, 8559-8561. (c)
Xu, W.; Chen, Q.-Y. Org. Biomol. Chem. 2003, 1, 1151-1156. (d) Sham,
H. L.; Batebenner, D. A. J. Chem. Soc., Chem. Commun. 1991, 1134-
1135.
(6) See refs 3b and 5d.
(7) (a) Yoshida, M.; Hayashi, M.; Shishido, K. Org. Lett. 2007, 9, 1643-
1646. (b) Hyland, C. J. T.; Hegedus, L. S. J. Org. Chem. 2006, 71, 8658-
8660. (c) Schultz-Fademrecht, C.; Zimmermann, M.; Fro¨hlich, R.; Hoppe,
D. Synlett 2003, 13, 1969-1972.
(8) Ichikawa, J. Pure Appl. Chem. 2000, 72, 1685-1689.
10.1021/jo800088y CCC: $40.75 © 2008 American Chemical Society
Published on Web 03/08/2008
2886
J. Org. Chem. 2008, 73, 2886-2889