C O M M U N I C A T I O N S
Scheme 3. Direct Arylation of Thiazole N-Oxidesa
2).15 Since π-nucleophilicity may contribute to reactivity and site
selectivity, the relative contribution of each carbon atom to the
HOMO is informative. The nearly equal distribution at all three
carbons of thiazole (25.2, 29.9, 30.5%) correlates well with the
challenges associated with C5/C2 regioselectivity for that substrate.
In stark contrast, the HOMO of thiazole N-oxide is localized at C2
and has very small density at C4 and C5 (∼3% contribution at
each). This maps well onto the high C2 selectivity and the mild
reaction conditions. Furthermore, the larger density at C5 of
2-phenylthiazole N-oxide corresponds well to the subsequent
preference for reaction at C5. This reactivity should have a broader
impact not only in direct arylation but also in the growing number
of metal-catalyzed heterocycle transformations that could make use
of the N-oxide activation strategy in the rapid functionalization of
these substrates.
Acknowledgment. NSERC, the University of Ottawa, the
Research Corporation, Boehringer Ingelheim (Laval), Merck Frosst
Canada, Merck Inc., and Astra Zeneca Montreal are thanked for
their financial support of this work.
Supporting Information Available: Experimental procedures,
spectroscopic characterization of all new products, and computational
details. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60, 8991. (b)
Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. Heterocycles in
Life and Society; Wiley: New York, 1997.
(2) (a) Schnu¨rch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M.
D.; Stanetty, P. Eur. J. Org. Chem. 2006, 3283. (b) Zificsak, C. A.; Hlasta,
D. J. Tetrahedron 2004, 60, 8991.
(3) For recent advances in Suzuki coupling of heterocycles, see: (a)
Billingsley, K. L.; Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2006, 45, 3484. (b) Kudo, N.; Perseghini, M.; Fu, G. C. Angew. Chem.,
Int. Ed. 2006, 45, 1282.
(4) For recent reviews forcusing on heterocycles, see: (a) Seregin, I. V.;
Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173. (b) Satoh, T.; Miura, M.
Chem. Lett. 2007, 36, 200. For general reviews on direct arylation, see:
(c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174.
(d) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253. (e) Daugulis,
O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva, A. Synlett
2006, 3382. (f) Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrich. Chim.
Acta 2007, 40, 35.
a Conditions: C2 arylation: ArBr, (1 equiv), thiazole N-oxide (1.1
equiv), Pd(OAc)2 (5 mol %), ligand 1 (10 mol %), K2CO3 (1.5 equiv),
PivOH (20 mol %) in PhMe (0.2 M) at 25 °C; C5 arylation: ArBr, (1
t
equiv), thiazole N-oxide (1.5 equiv), Pd(OAc)2 (5 mol %), Bu3PHBF4 (5
(5) For a recent report of C5 arylation under mild conditions, see: Turner,
G. L.; Morris, J. A.; Greaney, M. F. Angew. Chem., Int. Ed. 2007, 46,
7996.
mol %), K2CO3 (1.5 equiv) in PhMe (0.2 M) at 70 °C; C4 arylation: ArBr,
(1 equiv), thiazole N-oxide (1.1 equiv), Pd(OAc)2 (5 mol %), PPh3 (15
(6) (a) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull.
Chem. Soc. Jpn. 1998, 71, 467. (b) Bellina, F.; Cauteruccio, S.; Mannina,
L. J. Org. Chem. 2005, 70, 3997. (c) Yokooji, A.; Okazawa, T.; Satoh,
T.; Miura, M.; Nomura, M. Tetrahedron 2003, 59, 5685. (d) Parisien,
M.; Valette, D.; Fagnou, K. J. Org. Chem. 2005, 70, 7578. (e) Aoyagi,
Y.; Inoue, A.; Koizumi, I.; Hashimoto, R.; Tokunaga, K.; Gohma, K.;
Komatsu, J.; Sekine, K.; Miyafuji, A.; Kunoh, J.; Honuma, R.; Akita, Y.;
Ohta, A. Heterocycles 1992, 33, 257.
b
mol %), K2CO3 (2 equiv) in PhMe (0.2 M) at 110 °C. Using DavePhos
(10 mol %) at 70 °C. cUsing 2-(dicyclohexyl-phosphino)biphenyl (10 mol
%). dUsing DavePhos (10 mol %). eUsing the aryl iodide (1 equiv), Cs2CO3
f
(1.5 equiv) as base, and CuBr additive (10 mol %). Using CuBr as an
additive (10 mol %). gUsing the aryl iodide (1 equiv) and Cs2CO3 (2 equiv).
(7) (a) Bellina, F.; Cauteruccio, S.; Mannina, L.; Rossi, R.; Viel, S. Eur. J.
Org. Chem. 2006, 693. (b) Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J.
Org. Chem. 2006, 1379. (c) Mori, A.; Sekiguchi, A.; Masui, K.; Shimada,
T.; Horie, H.; Osakada, K.; Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc.
2003, 125, 1700. (d) Kondo, Y.; Komine, T.; Sakamoto, T. Org. Lett.
2000, 2, 3111.
(8) (a) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005,
127, 18020. (b) Leclerc, J.-P.; Fagnou, K. Angew. Chem., Int. Ed. 2006,
45, 7781.
(9) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46,
8872.
(10) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.
(11) Coperet, C.; Adolfsson, H.; Khovong, T. V.; Yudin, A. K.; Sharpless, K.
B. J. Org. Chem. 1998, 63, 1740.
(12) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496.
(13) In some cases, higher yields and/or reproducibility is obtained when a
catalytic copper bromide is added.
(eqs 1 and 2). Once arylation has been achieved, the N-oxide moiety
may be easily deoxygenated (Scheme 1 and the Supporting
Information).
The influence of the N-oxide fragment on the reactivity of the
thiazole core was evaluated by molecular orbital analysis (Scheme
(14) (a) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem.
Soc. 2006, 128, 4972. (b) Zhuravlev, F. A. Tetrahedron Lett. 2006, 47,
2929.
(15) Calculated by DFT at the B3LYP/TZVP level of theory.
JA7107068
9
J. AM. CHEM. SOC. VOL. 130, NO. 11, 2008 3277