Published on Web 02/23/2008
Structural and Rate Studies of the Formation
of Substituted Benzynes
Jason C. Riggs,† Antonio Ramirez,† Matthew E. Cremeens,† Crystal G. Bashore,‡
John Candler,‡ Michael C. Wirtz,‡ Jotham W. Coe,*,‡ and David B. Collum*,†
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell UniVersity,
Ithaca, New York 14853-1301, and Pfizer Global Research and DeVelopment, Groton
Laboratories, Pfizer, Inc., Groton, Connecticut 06340
Received July 22, 2007; E-mail: dbc6@cornell.edu
Abstract: The key elimination step for the formation of 3-substituted and 3,6-disubstituted benzynes from
2-haloaryllithiums displays a pronounced solvent-dependent regioselectivity. All 2-haloaryllithiums with
6
electron withdrawing groups in the 6 position are shown by Li and 13C NMR spectroscopic studies to be
monomers in THF. DFT computational studies implicate trisolvates. Rate studies reveal that LiF eliminates
via monomer-based pathways requiring THF dissociation whereas LiCl eliminates via nondissociative
pathways. Elimination to form 3-chloro- and 3-fluorobenzyne from 2-chloro-6-fluorophenyllithium displays
a pronounced solvent-dependent regioselectivity that is traced to competing solvent-dissociative and
nondissociative dissociative pathways for the elimination of LiCl and LiF, respectively.
nicotinic receptor partial agonist4 currently marketed as an aid
to smoking cessation treatment under the names Chantix and
Introduction
Benzyne has historically been a molecule of largely theoretical
interest.1 One cannot help notice, however, that the use of
benzynes as reactive intermediates in synthesis has picked up
markedly.2,3 We recently reported investigations of bicyclic
derivatives of general structure 2 related to varenicline (1), a
Champix (eq 1).5 The initial syntheses of 2 relied on the
generation and subsequent trapping of benzyne.6 During the
course of these studies, we discovered a pronounced solvent-
dependent regioselectivity illustrated in eq 2.6a,7 Whereas
formation of benzyne from 1-chloro-3-fluorobenzene (3) in
hydrocarbons or hydrocarbons containing low concentrations
of ethereal solvents affords predominantly the product arising
from elimination of LiF, the analogous reaction in neat THF
solution affords a 50:1 preference for the elimination of LiCl.
† Cornell University.
‡ Pfizer, Inc.
(1) (a) Ozkan, I.; Kinal, A. J. Org. Chem. 2004, 69, 5390. (b) De Proft, F.;
Schleyer, P. v. R.; van Lenthe, J. H.; Stahl, F.; Geerlings, P. Chem.-Eur.
J. 2002, 8, 3402. (c) Johnson, W. T. G.; Cramer, C. J. J. Phys. Org. Chem.
2001, 14, 597. (d) Jiao, H.; Schleyer, P. v. R.; Beno, B. R.; Houk, K. N.;
Warmuth, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 2761. (e) Radzisze-
wski, J. G.; Hess, B. A. Jr.; Zahradnik, R. J. Am. Chem. Soc. 1992, 114,
52, and references cited therein. (f) Wenthold, P. G.; Paulino, J. A.; Squires,
R. R. J. Am. Chem. Soc. 1991, 113, 7414. (g) Gronert, S.; DePuy, C. H. J.
Am. Chem. Soc. 1989, 111, 9253. (h) Hoffmann, R. W. Dehydrobenzene
and Cycloalkynes; Academic Press: New York, 1967.
We report herein structural studies of aryllithiums 6-10 and
(2) Recent reviews on benzyne: (a) Dyke, A. M.; Hester, A. J.; Lloyd-Jones,
G. C. Synthesis 2006, 4093. (b) Pellissier, H.; Santelli, M. Tetrahedron
2003, 59, 701. (c) Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem.,
Int. Ed. 2003, 42, 502. (d) Na´jera, C.; Sansano, J. M.; Yus, M. Tetrahedron
2003, 59, 9255. (e) Leroux, F.; Schlosser, M. Angew. Chem., Int. Ed. 2002,
41, 4272.
(3) Recent examples of generation of benzyne from haloaryllithiums: (i) via
LiF elimination: (a) Sanz, R.; Fernandez, Y.; Castroviejo, M. P.; Perez,
A.; Fan˜anas, F. J. J. Org. Chem. 2006, 71, 6291. (b) Heiss, C.; Leroux, F.;
Schlosser, M. Eur. J. Org. Chem. 2005, 24, 5242. (c) Kudzma, L. V.
Synthesis 2003, 1661. (d) Dyer, P. W.; Fawcett, J.; Hanton, M. J.; Kemmitt,
R. D. W.; Padda, R.; Singh, N. J. Chem. Soc., Dalton Trans. 2003, 104.
(e) Pawlas, J.; Begtrup, M. Org. Lett. 2002, 4, 2687. (f) Caster, K. C.;
Keck, C. G.; Walls, R. D. J. Org. Chem. 2001, 66, 2932. (ii) Via LiCl
elimination: (g) Heiss, C.; Cottet, F.; Schlosser, M. Eur. J. Org. Chem.
2005, 24, 5236. (h) Shoji, Y.; Hari, Y.; Aoyama, T. Tetrahedron Lett. 2004,
45, 1769. (i) Bennet, M. A.; Kopp, M. R.; Wenger, E.; Willis, A. C. J.
Organomet. Chem. 2003, 667, 8. (j) Gohier, F.; Castanet, A.-S.; Mortier,
J. Org. Lett. 2003, 5, 1919. (k) Faigl, F.; Marzi, E.; Schlosser, M. Chem.-
Eur. J. 2000, 6, 771. (l) Wang, A.; Zhang, H.; Biehl, E. R. Heterocycles
2000, 52, 1133. (iii) From 3-haloanisoles: (m) Biland-Thommen, A. S.;
Raju, G. S.; Blagg, J.; White, A. J. P.; Barrett, A. G. M. Tetrahedron Lett.
2004, 45, 3181. (n) Bauta, W. E.; Lovett, D. P.; Cantrell, Jr. W. R.; Burke,
B. D. J. Org. Chem. 2003, 68, 5967. (o) Becht, J.-M.; Gissot, A.; Wagner,
A.; Mioskowski, C. Chem.-Eur. J. 2003, 9, 3209. (p) Kita, Y.; Higuchi,
K.; Yoshida, Y.; Iio, K.; Kitagaki, S.; Ueda, K.; Akai, S.; Fujioka, H. J.
Am. Chem. Soc. 2001, 123, 3214.
(4) Rollema, H.; Coe, J. W.; Chambers, L. K.; Hurst, R. S.; Stahl, S. M.;
Williams, K. E. Trends Pharmacol. Sci. 2007, 28, 316.
(5) (a) Coe, J. W.; Brooks, P. R. P. U.S. Cont.-in-part of Appl. No. PCT/
IB98/01813, US 6605610, 2003. (b) Coe, J. W.; et al. J. Med. Chem. 2005,
48, 3474.
9
3406
J. AM. CHEM. SOC. 2008, 130, 3406-3412
10.1021/ja0754655 CCC: $40.75 © 2008 American Chemical Society